1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Numerical variational problem

  1. Jul 15, 2014 #1
    1. The problem statement, all variables and given/known data

    Here I am, trying to get the trajectory $(x(t),y(t))$ that will minimize the following Lagrangian (i.e. the integrand of the functional) between $(-1,-1)$ and $(-1,y_{eff})$ where $x_{eff}$ is defined as the point where $V(x_{eff},-1)=V(-1,-1),x<0$.

    So here's the integrand of the functional:

    $L=\frac{1}{2}((\partial_tx)^2+(\partial_ty)^2)-V(x(t),y(t))$

    with $V(x(t),y(t))$ defined as follows:

    $(x(t)^2-1)^2(x(t)^2-\delta_1)+\frac{(y(t)^2-1)^2-\frac{\delta_2}{4}(y(t)-2)(y(t)+1)^2}{x(t)^2+\gamma}$

    and

    $x(0.0001)=-1=y(0.0001)$

    $x(10)=x_{eff},y(10)=-1$

    2. Relevant equations

    The polar-coordinate Euler-Lagrange equation

    3. The attempt at a solution

    Code (Text):
    Needs["VariationalMethods`"];
    gamma = 0.1;
    delta1 = 0.1;
    delta2 = 0.1;
    tmin = 0.0001;
    tmax = 10;
    V[x[t_], y[
        t_]] := (x[t]^2 - 1)^2 (x[t]^2 -
          delta1) + ((y[t]^2 - 1)^2 - (delta2 (y[t] - 2) (y[t] + 1)^2)/
           4)/(x[t]^2 + gamma);
    U[x_, y_] := (x^2 - 1)^2 (x^2 - delta1) + ((y^2 - 1)^2 -
          delta2 (y - 2) (y + 1)^2/4)/(x^2 + gamma);
    ftn = 2*Pi*
      t (1/2 (D[x[t], t]^2 + D[y[t], t]^2) +
        V[x[t], y[t]]); (* Le Lagrangien *)
    Veff[x_] := U[x, -1];
    x0 = x /. FindRoot[Veff[x] == U[-1, -1], {x, -0.2}]
    sln = EulerEquations[ftn, {x[t], y[t]}, t]
    solution =
      NDSolve[{sln, x[tmin] == -1, y[tmin] == -1, x[tmax] == x0,
        y[tmax] == -1}, {x[t], y[t]}, {t, tmin, tmax}];
    psi[t_] = x[t] /. solution[[1, 1]];
    phi[t_] = y[t] /. solution[[1, 2]];
    NIntegrate[
     t (1/2 (D[psi[t], t]^2 +
           D[phi[t], t]^2) + ((psi[t]^2 - 1)^2 (psi[t]^2 -
             delta1) + ((phi[t]^2 - 1)^2 -
             delta2 (phi[t] - 2) (phi[t] + 1)^2/4)/(psi[t]^2 +
             gamma))), {t, tmin, tmax}]
    Plot[{psi[t], phi[t]}, {t, tmin, tmax}, PlotRange -> All]
    ParametricPlot[{psi[t], phi[t]}, {t, tmin, tmax}, PlotRange -> All]
    But, when I run that piece of Mathematica code, I run into an error message:

    Code (Text):
    NDSolve::ndsz: At t == 0.004410099463404809`, step size is effectively zero; singularity or stiff system suspected.
    Because of the stiffness of the system the numerical solution has a strange behavior...
     
  2. jcsd
  3. Jul 15, 2014 #2

    Ray Vickson

    User Avatar
    Science Advisor
    Homework Helper

    For inline equations, use either [i tex] xxxx [/i tex] (no spaces between i and t), or else # # xxx # # (no spaces betweent the two #s). For displayed equations, use [t ex] equations [/t ex] (no spaces between t and e). For example, ##V(x_{eff},-1)=V(-1,-1),x<0## and
    [tex] L=\frac{1}{2}((\partial_tx)^2+(\partial_ty)^2)-V(x(t),y(t)).[/tex]
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Numerical variational problem
Loading...