Hi all,(adsbygoogle = window.adsbygoogle || []).push({});

I've been having trouble answering these two ODE problems. Hopefully someone can help me out.

1. Compute the solution of y"' - xy' = 0 which satisfies y(0) = 1, y'(0) = 0, and y"(0) = 0.

I've tried using the power series expansion for y and substituting it in and getting the recurrence relation, but when I substitute back the initial conditions I'm getting the two series cancelling out which I don't think is right.

2. Solve the initial value problem 3y" - y' + (x+1)y = 1 with y(0) = y'(0) = 0

For this one, I know you have to compute both the power series expansion as well as a particular solution through substitution to be able to apply the initial conditions, but I'm seriously stuck in even thinking about what to substitute, let alone how to tackle this. I tried to start developing out the recurrence relationship, but it got really messy and I don't think I'm doing it right.

Thanks a lot to whoever can help, I really appreciate it!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# ODE Help!

**Physics Forums | Science Articles, Homework Help, Discussion**