So, I have to prove that in the metric space (R^n, d), where d is the standard Euclidean metric, B(x1, r1) = B(x2, r2) <==> x1 = x2 & r1 = r2.(adsbygoogle = window.adsbygoogle || []).push({});

I finished the proof, but I'm not sure about one step.

Assume B(x1, r1) = B(x2, r2) with x1 = x2. Using the triangle inequality for x1, x and x2, one obtains d(x1, x2) <= d(x1, x) + d(x, x2) < r1 + r2. Now, since this holds for any x1, x and x2, and specially, for any corresponding r1 and r2, i.e. r1 + r2, we conclude that d(x1, x2) = 0, so x1 = x2. Is this correct?

If so, then it is easy to prove the rest - assume B(x1, r1) = B(x2, r2) with x1 = x2 and r1 =/ r2, one easily derives a contradiction.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Open ball proof

**Physics Forums | Science Articles, Homework Help, Discussion**