So, I have to prove that in the metric space (R^n, d), where d is the standard Euclidean metric, B(x1, r1) = B(x2, r2) <==> x1 = x2 & r1 = r2.(adsbygoogle = window.adsbygoogle || []).push({});

I finished the proof, but I'm not sure about one step.

Assume B(x1, r1) = B(x2, r2) with x1 = x2. Using the triangle inequality for x1, x and x2, one obtains d(x1, x2) <= d(x1, x) + d(x, x2) < r1 + r2. Now, since this holds for any x1, x and x2, and specially, for any corresponding r1 and r2, i.e. r1 + r2, we conclude that d(x1, x2) = 0, so x1 = x2. Is this correct?

If so, then it is easy to prove the rest - assume B(x1, r1) = B(x2, r2) with x1 = x2 and r1 =/ r2, one easily derives a contradiction.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Open ball proof

**Physics Forums | Science Articles, Homework Help, Discussion**