(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Find the operator for position [tex]x[/tex] if the operator for momentum p is taken to be [tex]\left(\hbar/2m\right)^{1/2}\left(A + B\right)[/tex], with [tex]\left[A,B\right] = 1[/tex] and all other commutators zero.

2. Relevant equations

Canonical commutation relation

[tex]\left [ \hat{ x }, \hat{ p } \right ] = \hat{x} \hat{p} - \hat{p} \hat{x} = i \hbar[/tex]

3. The attempt at a solution

Using [tex]c = \left(\hbar/2m\right)^{1/2}[/tex]

[tex]\hat{x} \hat{p} f - \hat{p} \hat{x} f = i \hbar[/tex]

[tex]\hat{x} c \left(\hat{A} + \hat{B}\right) f - c \left(\hat{A} + \hat{B}\right) \hat{x} f = i \hbar[/tex]

[tex]c \hat{x} \left(\hat{A} + \hat{B}\right) f - c \left(\hat{A} + \hat{B}\right) \hat{x} f = i \hbar[/tex]

[tex]\hat{x} \hat{A} f + \hat{x} \hat{B} f - \hat{A} \hat{x} f - \hat{B} \hat{x} f = i \hbar / c[/tex]

[tex]\hat{x} \hat{A} f - c \hat{A} \hat{x} f + \hat{x} \hat{B} f - \hat{B} \hat{x} f = i \hbar / c[/tex]

[tex]\left [ \hat{x}, \hat{A} \right ] + \left [ \hat{x}, \hat{B} \right ] = i \hbar / c[/tex]

"all other commutators zero"

[tex]0 + 0 = i \hbar / c[/tex]

Problem 1.2 from http://www.oup.com/uk/orc/bin/9780199274987/" [Broken].

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Operators in Quantum Mechanics

**Physics Forums | Science Articles, Homework Help, Discussion**