Orbital mechanics terminal velocity vectors

  • Thread starter Dustinsfl
  • Start date
  • #1
699
5
For a given space triangle, derive expressions for the terminal velocity vectors ##\mathbf{v}_1## and ##\mathbf{v}_2## between points ##P_1## and ##P_2## in terms of the unit vectors ##\mathbf{u}_1##, ##\mathbf{u}_2## and ##\mathbf{u}_c##.

I know that ##\sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{s}{2a}}##, ##\sin\left(\frac{\beta}{2}\right) = \sqrt{\frac{s-c}{2a}}##, ##s = \frac{r_1+r_2+c}{2}##, ##a_m = \frac{s}{2}## (where ##a_m## is the minimum semi-major axis), ##A = \sqrt{\frac{\mu}{4a}}\cot\left(\frac{\alpha}{2}\right)##, and ##B = \sqrt{\frac{\mu}{4a}}\cot\left(\frac{\beta}{2}\right)##.

Additionally,
\begin{alignat}{2}
0\leq \Delta\nu\leq \pi,\quad & \beta = \beta_0\\
\pi < \Delta\nu < 2\pi,\quad & \beta = -\beta_0\\
t_2 - t_1\leq t_m,\quad & \alpha = \alpha_0\\
t_2 - t_1 > t_m,\quad & \alpha = 2\pi - \alpha_0
\end{alignat}
where $t_m$ greater than or equal to $t_2 - t_1$ is the shortest time of flight and the other situation is the longest.

The solution is
$$
\mathbf{v}_1 = (A+B)\mathbf{u}_c + (B-A)\mathbf{u}_1
$$
and
$$
\mathbf{v}_2 = (A+B)\mathbf{u}_c - (B-A)\mathbf{u}_2.
$$

I don't see how to obtain this.

http://img199.imageshack.us/img199/4710/spacetriangle.png [Broken]
 
Last edited by a moderator:

Answers and Replies

Related Threads on Orbital mechanics terminal velocity vectors

Replies
12
Views
2K
Replies
1
Views
2K
Replies
1
Views
3K
Replies
0
Views
862
Replies
0
Views
2K
  • Last Post
Replies
6
Views
758
  • Last Post
Replies
1
Views
1K
Replies
1
Views
2K
  • Last Post
Replies
3
Views
1K
Replies
2
Views
5K
Top