1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Orbits and Stabilisers

  1. Jan 31, 2012 #1
    1. The problem statement, all variables and given/known data

    For the finite group [itex]G[/itex] and G-set [itex]X[/itex] below, find the stabiliser [itex]\text{stab}_G(x)[/itex] of the given element [itex]x \in X[/itex] and describe the G-orbit of [itex]x[/itex].

    http://img36.imageshack.us/img36/1962/grouplg.jpg [Broken]

    2. Relevant equations

    The stabiliser of [itex]x[/itex] is defined: [tex]\text{stab}_G (x) = \{ g\in G : gx=x \}[/tex]
    3. The attempt at a solution

    I get: [tex]\text{orb}_G \left ( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right ) = \left \{ g \begin{bmatrix} 1 \\ 0 \end{bmatrix} : g\in G \right \}[/tex] [tex]= \left \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} , \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} , \begin{bmatrix} -1 \\ 0 \end{bmatrix} , \begin{bmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} , \begin{bmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} \right \}[/tex]

    But when the question says 'describe the G-orbit of [itex]x[/itex]' does this mean 'find [itex]\text{orb}_G (x)[/itex]' or what?
     
    Last edited by a moderator: May 5, 2017
  2. jcsd
  3. Jan 31, 2012 #2

    jbunniii

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Yes. Your answer looks fine to me. The question also asks for the stabilizer of x. Did you answer that part? (I assume the answer is pretty obvious.)
     
  4. Jan 31, 2012 #3
    OK good. I think the stabiliser is just [tex]\text{stab}_G (x) = \left \{
    \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right \}[/tex]
     
  5. Jan 31, 2012 #4

    jbunniii

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Yep.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Orbits and Stabilisers
  1. Orbits and Partitions (Replies: 5)

  2. Orbits of Z (Replies: 1)

  3. Periodic orbits (Replies: 7)

  4. Periodic orbit (Replies: 7)

Loading...