If G is an abelian group, a in G has order m, b in G has order n, and gcd(m,n)=1, show that ab has order mn.(adsbygoogle = window.adsbygoogle || []).push({});

I am able to show that (ab)^(mn)=e actually occurs. I am having great difficulty however showing that mn is the smallest such integer. I tried to assume that there were a smaller integer, but I could not derive any contradiction. I tried to use the fact that gcd(m,n)=1 as best I could, but I can't make it work for me.

Anyone have any ideas on where to go with this proof?

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Order of elements in a group

**Physics Forums | Science Articles, Homework Help, Discussion**