Hi, I was just wondering if there is something more to the concept of an ordered basis other than the fact that it is simply a basis which is ordered. The reason I'm asking this is because I don't know why some linear algebra books consider this important enough to make the distinction. I mean, given a basis for a finite-dimensional vector space, we can always order it any way we choose. In fact, whenever we talk about a finite set in general, we automatically give it an ordering so we are able to talk about it meaningfully.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Ordered Basis

Loading...

Similar Threads - Ordered Basis | Date |
---|---|

A 4th order tensor inverse and double dot product computation | May 10, 2017 |

I Notation N(H) for a subgroup | Oct 28, 2016 |

A Normalization and Scaling with Matrices | Jul 21, 2016 |

Diagonalization-ordered basis | May 16, 2009 |

**Physics Forums - The Fusion of Science and Community**