Orthogonal Vector to a plane

  1. The problem statement, all variables and given/known data

    Find a nonzero vector orthogonal to the plane through points P (0, -2, 0) Q (4, 1, -2) and R (5,3,1) and find the area of the triangle formed by PQR.

    The attempt at a solution
    To be honest, I am not entirely sure how to do this problem. I've looked through my textbook and notes, but there is no example that is of the same form of this problem. However, I suspect the cross product is important:

    PQ has a vector of <4,3,-2>
    RP has a vector of <5,5,1>

    Trying to find the cross product I get:
    (3--6) - (4-10) + (20 - 15)
    Equals 20.

    Is that right, and what do I do from here?
  2. jcsd
  3. You're on the right track. Those 2 vectors you have are parallel to your plane. If you compute the cross product between them, you will get a new vector perpendicular to the 2 vectors and hence perpendicular to the plane. Do you know how to compute the cross product? What you get should be a vector. The next bit relies on the geometric definition of the cross product.

    Go over on computing the cross product as it's all you'll need.
  4. Wow, epic fail. Thanks!
Know someone interested in this topic? Share this thead via email, Google+, Twitter, or Facebook

Have something to add?