Orthogonality question

• I
Gold Member
Consider two momentum eigenstates ##\phi_1## and ##\phi_2## representing momenta ##p_1## and ##p_2##. For the sake of easy numbers, ##p_1=1*\hbar## (with ##k=1##) and ##p_2=2*\hbar## (with ##k=2##). Thus, ##\phi_1=e^{ix}## and ##\phi_2=e^{2ix}##. Orthogonality states that
##\int \phi_1^*\phi_2dx=\int e^{-ix}e^{2ix}dx=0##
Why is this?

I understand how orthogonality would work with dirac deltas (i.e. I know why position eigenfunctions are orthogonal in position space and why momentum eigenfunctions are orthogonal in momentum space, etc.) but I am unclear of how it works with plane waves.

Also, I am specifically asking why ##\int e^{-ix}e^{2ix}dx=0##, not why orthogonality works in general (I understand its derivation using the definition of hermitian operators and the inner product).

Related Quantum Physics News on Phys.org
hilbert2
Gold Member
You could first try to plot some graphs of real functions ##\sin k_1 x \sin k_2 x## where ##k_2## is much larger than ##k_1## and convince yourself of the fact that there's practically as much "positive" as "negative" surface area between the graph and the x-axis.

Jilang and Isaac0427
Gold Member
You could first try to plot some graphs of real functions ##\sin k_1 x \sin k_2 x## where ##k_2## is much larger than ##k_1## and convince yourself of the fact that there's practically as much "positive" as "negative" surface area between the graph and the x-axis.
I guess then that my question is how do you numerically evaluate that improper integral?

hilbert2