1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

P-adic number problem

  1. Oct 26, 2015 #1
    The question at hand:

    Let A be a 10-adic number, not a zero divisor. Proof that a 10-adic number B is dividible by A if 2^q*5^p*B has ends with p+q zeroes.

    My work so far:

    Because A is not a zero divisor, it is not dividible by all powers of 2 nor 5, so it follows from a theorem that A = 2^q*5^p*C with C invertible and p and q natural numbers. Now I have no clue how to connect this with 0. If anybody could help me out, I would be very grateful.

    Thanks in advance.
  2. jcsd
  3. Oct 31, 2015 #2
    Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook