- #1

- 1,030

- 4

## Homework Statement

Show that on of the hyperboloid of revolution x^2+y^2-z^2=1, the

**parallel of least radius**is the line of striction, ...

What's the parallel of least radius?

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- #1

- 1,030

- 4

Show that on of the hyperboloid of revolution x^2+y^2-z^2=1, the

What's the parallel of least radius?

- #2

Science Advisor

Homework Helper

- 43,008

- 974

Now, clear up my confusion: what is a "line of striction"?

- #3

- 1,030

- 4

Given a ruled surface x(t,v)=a(t)+vw(t), a line of striction is a curve b(t) such that <b'(t),w'(t)>=0 for all t and b lies on the trace of x, ie b(t)=a(t)+u(t)w(t) for some real valued function u(t). It be can then shown that u(t) is given by

[tex]u=-\frac{<a',w'>}{<w',w>}[/tex].

The points of a line of striction are the "central points" of the ruled surface.

[tex]u=-\frac{<a',w'>}{<w',w>}[/tex].

The points of a line of striction are the "central points" of the ruled surface.

Last edited:

Share:

- Replies
- 4

- Views
- 747

- Replies
- 23

- Views
- 1K

- Replies
- 7

- Views
- 242

- Replies
- 11

- Views
- 529

- Replies
- 5

- Views
- 578

- Replies
- 4

- Views
- 659

- Replies
- 7

- Views
- 590

- Replies
- 2

- Views
- 767

- Replies
- 8

- Views
- 738

- Replies
- 3

- Views
- 1K