The semicircle [tex] \mbox{f(x) = }\sqrt{a^2-x^2} \mbox{ -a} <=\mbox{ x }<= \mbox{a }[/tex], ( see my last thread) has the parametric equations [tex]x= }a cos\theta\mbox{, y=} a sin\theta, 0 <= \theta <= \pi[/tex], show that the mean value with respect to [tex]\theta[/tex] of the ordinates of the semicircle is [tex] 2a/\pi(.64a)[/tex].(adsbygoogle = window.adsbygoogle || []).push({});

Can someone show how you can get an expression in [tex]\theta[/tex], so I can integrate it, I 'm new to parametric equations. Thanks for the help.

My attempt: [tex] a sin\theta = \sqrt{a^2-a^2cos^2\theta}\mbox{ which gives } a sin\theta = a sin\theta\mbox {which is what you would expect}[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Parametric equation

**Physics Forums | Science Articles, Homework Help, Discussion**