Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Parametric equation

  1. Jun 20, 2004 #1
    Hi...i was just wondering if anyone gets the same answer to what i get for the following question...thanks...

    find [tex]\frac{dy^2}{dx^2}[/tex] in terms of t for...

    x = 2cost - cos2t, y = 2sint + sin2t...

    i got my answer to be [tex]\frac{1 + cost}{2sin^3t(1 -2cost)}[/tex]

    the answer is given as [tex]\frac{-1}{sin^3t(2cost -1)}[/tex]

    have i gone wrong somewhere...do i need to simplify further...the answer i got and the one that is given do have some similarities so i'm just wondering...???...
     
  2. jcsd
  3. Jun 21, 2004 #2

    arildno

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    Dearly Missed

    You have:
    [tex]\frac{dy}{dt}=\frac{dy}{dx}\frac{dx}{dt}\to\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}[/tex]
    Also:
    [tex]\frac{d^{2}y}{dt^{2}}=\frac{d^{2}y}{dx^{2}}(\frac{dx}{dt})^{2}+\frac{dy}{dx}\frac{d^{2}x}{dt^{2}}[/tex]
    Rearranging, we get:
    [tex]\frac{d^{2}y}{dx^{2}}=\frac{\frac{d^{2}y}{dt^{2}}\frac{dx}{dt}-\frac{dy}{dt}\frac{d^{2}x}{dt^{2}}}{(\frac{dx}{dt})^{3}}[/tex]
     
    Last edited: Jun 21, 2004
  4. Jun 21, 2004 #3
    Hi...thank you...

    i found:

    [tex]\frac{d^2y}{dx^2}[/tex]

    = (d/dt)(dy/dx) * (dt/dx)

    did you get the same answer as me...???...
     
  5. Jun 21, 2004 #4

    arildno

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    Dearly Missed

    Do not use that form; instead let:
    y(t)=y(x(t))
    Follow the derivation in post 3 to find the correct expression.
    (The notation used here is rather sloppy, but it shouldn't be too difficult to follow)
     
  6. Jun 21, 2004 #5
    Hi...thank you...

    the method i mentioned is the way we've been shown in the textbook and in the notes...and that's the way i've tackled other questions...it's better for me to stick to the method shown in the classes...

    i got dx/dt = -2sint + 2sin2t and dy/dt = 2cost + 2cos2t...

    then i got dy/dx = (cost + 1)/sint

    then (d^2t)/(dx^2) = (d/dt)(dy/dx) * dt/dx...

    i got (d/dt)(dy/dx) = (-1 - cost)/(sin^2t)

    and dt/dx = 1/(-2sint + 2cost)

    then (d^2t)/(dx^2) = (1 + cost)/[(2sin^3(t)(1 - cost)]...

    but the answer is given as something else...???...
     
  7. Jun 21, 2004 #6
    Personally, I would stick with the more efficient/clever method regardless of where I've learned it from, but anywho...

    Correct.
    Where are you getting this from? You might one to check this again.
     
  8. Jun 21, 2004 #7
    Hi...thank you...

    i got dx/dy = (dy/dt)/(dx/dt)...

    according to the answer i've got that bit right...
     
  9. Jun 22, 2004 #8

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    No, dx/dy= (dx/dt)/(dy/dt)
     
  10. Jun 22, 2004 #9
    Hi...sorry, i was meaning the first derivative - dy/dx...

    dy/dx = (dy/dt)/(dx/dt)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?