- #1

- 372

- 0

[tex]x(t)= \left( u\cos A \right) t[/tex]

and

[tex]y(t)= \left( u\sin A \right) t - \frac{gt^2}{2} + h[/tex]

represent the horizontal and vertical coordinates of a batted or thrown baseball. [tex]A[/tex] is the initial angle of elevation and [tex]u[/tex] is the initial speed of the ball. I need to plot [tex]x(t)[/tex] and [tex]y(t)[/tex] parametrically. I'm given the following

[tex]u = 125 \mbox{ ft/s}[/tex]

[tex]g = 32 \mbox{ ft/s}^2[/tex]

[tex]h = 3 \mbox{ ft}[/tex]

[tex]A[/tex] may take several different values. Here follows the random choices I made and the corresponding graphs:

[tex]A=\frac{\pi}{3}[/tex]

http://img25.imagevenue.com/img.php?loc=loc93ℑ=663_parametricplot_1.jpg

[tex]A=\frac{4\pi}{9}[/tex]

http://img6.imagevenue.com/img.php?loc=loc123ℑ=26c_parametricplot_2.jpg

[tex]A=\frac{\pi}{2}[/tex]

http://img6.imagevenue.com/img.php?loc=loc123ℑ=26c_parametricplot_2.jpg

Could you please take a quick look at those graphs? In my opinion, there seems to be something wrong.

Thank you

and

[tex]y(t)= \left( u\sin A \right) t - \frac{gt^2}{2} + h[/tex]

represent the horizontal and vertical coordinates of a batted or thrown baseball. [tex]A[/tex] is the initial angle of elevation and [tex]u[/tex] is the initial speed of the ball. I need to plot [tex]x(t)[/tex] and [tex]y(t)[/tex] parametrically. I'm given the following

[tex]u = 125 \mbox{ ft/s}[/tex]

[tex]g = 32 \mbox{ ft/s}^2[/tex]

[tex]h = 3 \mbox{ ft}[/tex]

[tex]A[/tex] may take several different values. Here follows the random choices I made and the corresponding graphs:

[tex]A=\frac{\pi}{3}[/tex]

http://img25.imagevenue.com/img.php?loc=loc93ℑ=663_parametricplot_1.jpg

[tex]A=\frac{4\pi}{9}[/tex]

http://img6.imagevenue.com/img.php?loc=loc123ℑ=26c_parametricplot_2.jpg

[tex]A=\frac{\pi}{2}[/tex]

http://img6.imagevenue.com/img.php?loc=loc123ℑ=26c_parametricplot_2.jpg

Could you please take a quick look at those graphs? In my opinion, there seems to be something wrong.

Thank you

Last edited: