- #1
Malamala
- 284
- 25
Hello! I read in several papers (e.g. this one) that if we have 2 levels of fixed, opposite parities, which are the eigenstates of a P,T-even Hamiltonian, and we add a perturbing potential which is P-odd, T-even, the matrix element of the new potential between the 2 states of opposite parity must be purely imaginary. How can I prove this? Thank you!