Part of proof

  • Thread starter Lenardo
  • Start date
  • #1
4
0
Suppose that [tex]f[/tex] is a real-valued continuous function on [tex][0,1][/tex] and let [tex]F_n=\int\limits_{0}^1 f^n(x)\ dx[/tex].

If [tex]F_3=0[/tex], then by Cauchy-Schwartz inequality [tex]\left(\int_{0}^{1}(a+f^{2}(x))f(x)dx\right)^{2}\leq\int_{0}^{1}(a+f^{2}(x))^{2}f^{2}(x)dx, a\in \mathbb R[/tex].

This implies [tex]\ast[/tex].

[tex] -a^{2}(1-\frac{F_{1}^{2}}{F_{2}})-2aF_{2}\leq F_{4}\cdots\cdots\cdots\ast[/tex]

I don't understand how we get [tex]\ast[/tex] .

The calculations gives me [tex]a^{2}F_{1}^{2}-a^{2}F_{2}-2aF_{4}\le F_{6}[/tex] ??
 

Answers and Replies

Related Threads on Part of proof

Replies
9
Views
2K
Replies
18
Views
3K
Replies
2
Views
1K
Replies
1
Views
2K
  • Last Post
Replies
8
Views
3K
  • Last Post
Replies
1
Views
6K
Replies
4
Views
1K
Replies
8
Views
5K
  • Last Post
Replies
2
Views
5K
  • Last Post
Replies
2
Views
3K
Top