(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A function is called homogeneous of degree n if it satisfied the equation f(tx,ty) =t^(n) f(x,y), for all t, where n is a positive integer and f has continuous 2nd order partial derivatives.

If f is homogeneous of degree n, show that df/dx (tx,ty) = t^(n-1) df/dx(x,y)

*Using df/dx for partial derviatives.

3. The attempt at a solution

Basically I've taken the partial derivatives of each side of the definition of homogeneous equation above, applying the chain rule (that's what section the problem is in). What I get is:

d/d(tx) (tx,ty) * t = t^n d/dx(x,y)

which simplifies to df/d(tx) (tx,ty) = t^(n-1) df/dx(x,y).

It feels like I'm done, but I can't figure out-conceptually or otherwise- why the partial derivative with respect to (tx) of f(tx,ty) is the same as the partial derivative with respect to x of f(tx,ty).

Thanks in advance for help!

1. The problem statement, all variables and given/known data

2. Relevant equations

3. The attempt at a solution

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Partial derivative chain rule

**Physics Forums | Science Articles, Homework Help, Discussion**