Partial derivative check me

  • Thread starter rocomath
  • Start date
  • #1
1,752
1
[SOLVED] Partial derivative ... check me plz

[tex]f(x,y)=\sqrt[5]{x^7y^4}[/tex]

[tex]f_x(x,y)=\frac 1 5(x^7y^4)^{-\frac{4}{5}}(7x^6y^4)[/tex]

[tex]f_x(x,y)=\frac{7x^6y^4}{5\sqrt[5]{x^7y^4}}[/tex]

Correct?
 
Last edited:

Answers and Replies

  • #2
Hootenanny
Staff Emeritus
Science Advisor
Gold Member
9,621
6
[tex]f(x,y)=\sqrt[5]{x^7y^4}[/tex]

[tex]f_x(x,y)=\frac 1 5(x^7y^4)^{-\frac{4}{5}}(7x^6y^4)[/tex]

[tex]f_x(x,y)=\frac{7x^6y^4}{5\sqrt[5]{x^7y^4}}[/tex]

Correct?
I don't think so.

HINT:

[tex]f(x,y) = x^{7/5}y^{4/5}[/tex]
 
  • #3
1,752
1
I don't think so.

HINT:

[tex]f(x,y) = x^{7/5}y^{4/5}[/tex]
omg ... I'm embarassed :D

ok so ...

[tex]f_x(x,y)=\frac 7 5x^{\frac 2 5}y^{\frac 4 5}[/tex]
 
  • #4
Hootenanny
Staff Emeritus
Science Advisor
Gold Member
9,621
6
omg ... I'm embarassed :D

ok so ...

[tex]f_x(x,y)=\frac 7 5x^{\frac 2 5}y^{\frac 4 5}[/tex]
Sounds good to me :approve:
 
  • #5
1,752
1
Thanks Hootenanny :)
 
  • #6
Hootenanny
Staff Emeritus
Science Advisor
Gold Member
9,621
6
  • #7
Vid
401
0
You would have gotten the same answer, but the denominator has the wrong exponent.
 

Related Threads on Partial derivative check me

  • Last Post
Replies
0
Views
862
  • Last Post
Replies
1
Views
544
Replies
2
Views
1K
Replies
1
Views
639
Replies
6
Views
2K
  • Last Post
Replies
4
Views
819
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
7
Views
1K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
0
Views
2K
Top