- #1

- 50

- 0

## Homework Statement

A function f: R^n--R is homogenous of degree p if f( [tex]\lambda[/tex]x)=[tex]\lambda[/tex]^p f(x) for all [tex]\lambda[/tex][tex]\in[/tex]R and all x[tex]\in[/tex]R^n

show that if f is differentiable at x ,then x[tex]\nabla[/tex]f(x)=pf(x)

## Homework Equations

## The Attempt at a Solution

set g([tex]\lambda[/tex])=f([tex]\lambda[/tex]x)

find out g'(1)

then how to continue ?