Partial derivative

  • I
  • Thread starter Apashanka
  • Start date
  • #1
Apashanka
429
15
If given a function ##u(x,y) v(x,y)## then is it correct to write ##\frac{\partial }{\partial x}u(x,y)v(x,y)=\frac{u(x+dx,y)v(x+dx,y)-u(x,y)v(x,y)}{dx}##??
 

Answers and Replies

  • #2
36,483
8,450
If given a function ##u(x,y) v(x,y)## then is it correct to write ##\frac{\partial }{\partial x}u(x,y)v(x,y)=\frac{u(x+dx,y)v(x+dx,y)-u(x,y)v(x,y)}{dx}##??
Not quite. Above, you're using the definition of the (partial) derivative of the product of two functions, which is a limit.

Corrected, this would be $$\lim_{h \to 0}
\frac{u(x+h, y)v(x+h, y) - u(x, y)v(x,y )}{h}$$
 
  • Like
Likes Apashanka and jim mcnamara
  • #3
Apashanka
429
15
Not quite. Above, you're using the definition of the (partial) derivative of the product of two functions, which is a limit.

Corrected, this would be $$\lim_{h \to 0}
\frac{u(x+h, y)v(x+h, y) - u(x, y)v(x,y )}{h}$$
Ok using ##\frac{\partial}{\partial x}u(x,y)v(x,y)=\frac{\partial u(x,y)}{\partial x}v(x,y)+u(x,y)\frac{\partial v(x,y)}{\partial x}## can't it be ##\frac{u(x+dx,y)-u(x,y)}{dx}v(x,y)+u(x,y)\frac{v(x+dx,y)-v(x,y)}{dx}??##
 
  • #4
36,483
8,450
Ok using ##\frac{\partial}{\partial x}u(x,y)v(x,y)=\frac{\partial u(x,y)}{\partial x}v(x,y)+u(x,y)\frac{\partial v(x,y)}{\partial x}## can't it be ##\frac{u(x+dx,y)-u(x,y)}{dx}v(x,y)+u(x,y)\frac{v(x+dx,y)-v(x,y)}{dx}??##
Again, not quite -- you are trying to use the definitions of the two partial derivatives without including that these are limits.

The corrected version would be $$\lim_{h \to 0}\left(\frac{u(x+h,y)-u(x,y)}{h}\right) v(x,y)+u(x,y)\lim_{h \to 0}\left(\frac{v(x+h,y)-v(x,y)}{h}\right)$$
 
  • #5
Apashanka
429
15
Again, not quite -- you are trying to use the definitions of the two partial derivatives without including that these are limits.

The corrected version would be $$\lim_{h \to 0}\left(\frac{u(x+h,y)-u(x,y)}{h}\right) v(x,y)+u(x,y)\lim_{h \to 0}\left(\frac{v(x+h,y)-v(x,y)}{h}\right)$$
So which is correct post 2 or post 4
 
  • #6
36,483
8,450
So which is correct post 2 or post 4
Both are correct. It's possible to derive what I wrote in post 4 from what is in post 2.
 
  • #7
HallsofIvy
Science Advisor
Homework Helper
43,021
970
When you write "u(x+ dx)" exactly what do you mean by "x+ dx"? In order to make sense of that you would have to use "non-standard analysis" and I don't think that's what you mean.
 

Suggested for: Partial derivative

  • Last Post
Replies
6
Views
736
  • Last Post
Replies
0
Views
256
  • Last Post
Replies
6
Views
590
  • Last Post
Replies
3
Views
955
  • Last Post
Replies
2
Views
508
Replies
2
Views
368
  • Last Post
Replies
4
Views
638
  • Last Post
Replies
6
Views
515
  • Last Post
Replies
4
Views
337
  • Last Post
Replies
2
Views
1K
Top