Hi.(adsbygoogle = window.adsbygoogle || []).push({});

I'm not so well-versed in the topic of partial differential equations, but the following question has arisen.

Suppose that for some unknown function u(s, t) of two variables, we have a set of differential equations

[tex]\left\{ \begin{matrix} u_s(s, t) & {} = f(s, t, u(s, t)) \\ u_t(s, t) & {} = g(s, t, u(s, t)) \end{matrix} \right. [/tex]

where u_{s}denotes the partial derivative of u(s, t) w.r.t. s.

My question is, what the conditions on f would have to be in order to have a good solution for u(s, t). For example, we can integrate the first one to get u(s, T) for fixed t = T, and similarly the second one will give u(S, t) for fixed s = S, but of course u(S, T) must be well-defined (i.e. single-valued).

I am particularly interested in the case where f and g do not depend on s and t explicitly (i.e. only through u(s, t)) and the case where they do not depend on u(s, t) explicitly.

Thanks for sharing your thoughts.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Partial differential equations

**Physics Forums | Science Articles, Homework Help, Discussion**