1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Partial Fraction

  1. Feb 5, 2006 #1
    Hi all!
    how would you do this partial fraction problem?
    [tex]\frac{1}{s(s+1)^3(s+2)}[/tex]

    The answer is [tex]\frac{1}{2s}+\frac{1}{2(s+2)}-\frac{1}{s+1}-\frac{1}{(s+1)^3} [/tex]

    I know that it can be done by letting
    [tex] \frac{1}{s(s+1)^3(s+2)} = \frac{A}{s}+\frac{B}{s+2}+\frac{C}{s+1}+\frac{D}{(s+1)^2}+\frac{E}{(s+1)^3} [/tex] and solve for A,B,C,D and E. I tried and it is very tedious. It is easy to find A, B and E but not for the others.

    Can anyone tell me a quicker way to do this? Thanks
     
  2. jcsd
  3. Feb 5, 2006 #2

    cepheid

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Sure! Here's a neat trick. Let's derive a formula for the coefficients A, B, C, ... etc.

    [tex] f(s) = \frac{1}{s(s+1)^3(s+2)} = \frac{A}{s}+\frac{B}{s+2}+\frac{C}{s+1}+\frac{D}{( s+1)^2}+\frac{E}{(s+1)^3} [/tex]

    Now, to solve for B, what if we started by multiplying everything by s+2?

    [tex] (s+2)f(s) = \frac{(s+2)}{s(s+1)^3(s+2)} = B + (s+2)\left(\frac{A}{s} +\frac{C}{s+1}+\frac{D}{( s+1)^2}+\frac{E}{(s+1)^3}\right) [/tex]

    Now, let's evaluate the expression at s = -2:

    [tex] (s+2)f(-2) = \frac{1}{-2(-2+1)^3} = B + (-2+2)\left(\frac{A}{s} +\frac{C}{s+1}+\frac{D}{( s+1)^2}+\frac{E}{(s+1)^3}\right) [/tex]

    [tex] (s+2)f(-2) = \frac{1}{-2(-1)^3} = B + 0 [/tex]

    [tex] (s+2)f(-2) = \frac{1}{2} = B [/tex]

    I think you can see the general trend. To calculate the coefficient of the partial fraction expansion term having (s-a) in the denominator, multiply the original expression by (s-a), and then evaluate the whole thing at s = a.
     
  4. Feb 5, 2006 #3
    Thank Cepheid!
    But I still meet a problem when finding, say, C.
    Following the trend, I should multipy
    [tex]s+1[/tex] or
    [tex] (s+1)^3 [/tex] to f(s).

    But for the former case, the denominator of [tex](s+1)f(s)=\frac{1}{s(s+1)^2(s+2)}[/tex] tends to infinite when s = -1.

    For the latter case, the denominator of [tex](s+1)^3f(s)=\frac{1}{s(s+2)}[/tex] is ok when s = -1 but C is now is stuck with [tex] C(S+1)^2 [/tex].
    I still can't get C and D.

    Or I missed something? Please point it out.
     
    Last edited: Feb 5, 2006
  5. Feb 5, 2006 #4

    VietDao29

    User Avatar
    Homework Helper

    No, I don't think you are missing anything. You can just choose randomly 2 more x's, plus it in the expression, and solve for C, and D using A, B, and E.
    Or if you don't want to solve equations, you can rearrange it, and solve for C, and D.
    [tex]\frac{1}{s(s + 1)^3 (s + 2)} = \frac{A}{s} + \frac{B}{s + 2} + \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2} + \frac{E}{(s + 1) ^ 3}[/tex] (1), and you know that:
    A = 1 / 2, B = 1 / 2, E = -1, by plugging it in the expression (1), we have:
    [tex]\frac{1}{s(s + 1)^3 (s + 2)} = \frac{1}{2s} + \frac{1}{2(s + 2)} + \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2} - \frac{1}{(s + 1) ^ 3}[/tex]
    Isolate the unknows:
    [tex]\Leftrightarrow \frac{1}{s(s + 1) ^ 3 (s + 2)} - \frac{1}{2s} - \frac{1}{2(s + 2)} + \frac{1}{(s + 1) ^ 3} = \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2}[/tex]
    [tex]\Leftrightarrow \frac{2 - (s + 1) ^ 3 (s + 2) - s(s + 1) ^ 3 + 2s(s + 2)}{2s(s + 1) ^ 3 (s + 2)} = \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2}[/tex]
    [tex]\Leftrightarrow \frac{2 - (s + 1) ^ 3 ((s + 2) + s) + 2s(s + 2)}{2s(s + 1) ^ 3 (s + 2)} = \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2}[/tex]
    [tex]\Leftrightarrow \frac{2 - 2 (s + 1) ^ 4 + 2s(s + 2)}{2s(s + 1) ^ 3 (s + 2)} = \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2}[/tex]
    [tex]\Leftrightarrow \frac{2 (1 - (s + 1) ^ 4) + 2s(s + 2)}{2s(s + 1) ^ 3 (s + 2)} = \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2}[/tex]
    [tex]\Leftrightarrow \frac{2 (1 - (s + 1) ^ 2) (1 + (s + 1) ^ 2) + 2s(s + 2)}{2s(s + 1) ^ 3 (s + 2)} = \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2}[/tex]
    [tex]\Leftrightarrow \frac{2 (1 - (s + 1)) (1 + (s + 1)) (1 + (s + 1) ^ 2) + 2s(s + 2)}{2s(s + 1) ^ 3 (s + 2)} = \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2}[/tex]
    [tex]\Leftrightarrow \frac{-2s (s + 2) (1 + (s + 1) ^ 2) + 2s(s + 2)}{2s(s + 1) ^ 3 (s + 2)} = \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2}[/tex]
    [tex]\Leftrightarrow \frac{-2s (s + 2) (s + 1) ^ 2}{2s(s + 1) ^ 3 (s + 2)} = \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2}[/tex]
    [tex]\Leftrightarrow -\frac{1}{(s + 1) ^ 2} = \frac{C}{s + 1} + \frac{D}{(s + 1) ^ 2}[/tex]. From here, one can say that C = 0, and D = -1.
    However, I think it's damn long, and solving equations may be faster.
    --------------
    Now, why don't you do the first way, by plugging 2 more x's in and solve equations, to see if you can arrive at the same answer?
    You can go from here, right? :)
     
    Last edited: Feb 5, 2006
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Partial Fraction
  1. Partial Fractions (Replies: 5)

  2. Partial Fractions (Replies: 4)

  3. Partial fractions (Replies: 3)

  4. Partial fractions (Replies: 4)

  5. Partial fractions (Replies: 2)

Loading...