Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I am not able to understand something about partial tracing. We have a quantum state [itex]\rho_{AB}[/itex]. The Hilbert Space is [itex]H_{A}\otimes H_{B}[/itex]. For some observable [itex]A[/itex] in [itex]H_{A}[/itex], we have

[itex]

Tr_{A}(\rho_{A}A)=Tr_{AB}(\rho_{AB}(A\otimes 1))

=\sum\sum<a_{j}, b_{k}|\rho_{AB}(A\otimes 1_{B})|a_{j}, b_{k}>[/itex]

where the summation is over j and k. So here is the question: Why is the first equality true? What exactly is the information conveyed here? I have some idea but its a bit fuzzy so could you help me? Thank you!

And on a related, yet different note, what is the meaning of [itex]Tr_{AB}(\rho_{AB}(A\otimes B))[/itex]. That is, we are measuring with some operator [itex]A[/itex] in [itex]H_{A}[/itex] and [itex]B[/itex] in [itex]H_{B}[/itex]. The trace is some "expectation value" so what information does it have? I think that for non-entagled states, the answer is clear but when the state is an entangled one, then what? Thank you!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Partial Trace Question

**Physics Forums | Science Articles, Homework Help, Discussion**