- #1

- 24

- 0

This is the question:

For a particle in a three-dimensional box of sides a, b, and c, where a does not equal b and b=c, make a table of n_x, n_y, and n_z, the energies, and the degeneracies of the levels in which the quantum numbers range from 0 to 4 (Take ((a^2)/(b^2)) = 2).

Ok, I think I have an idea of what I'm supposed to do, but I'm a little confused on two parts of the question. When they ask for a table using quantum numbers from 0 to 4, would that mean I'd have to make a long list with n_x, n_y, and n_z like:

0 0 0

0 0 1

0 0 2

0 0 3

0 0 4

0 0 5

and so on until I've listed all 125? Someone in my class said that there were 64 because of the zeroes, however I didn't really understand why we would be able to. I know that:

http://img165.imageshack.us/img165/1706/01mk3.jpg [Broken]

So once I list all the states, I would have to substitute in the values for n_x, n_y, and n_z - but am I supposed to be able to get numerical values for the energies? I can get solve for a in terms of b and such, then plug in, but I still wouldn't get any numbers. Once I can figure out what I have to list, all I'd have to do to list the degeneracy is count the amount of states with different quantum numbers that have the same energy.

For a particle in a three-dimensional box of sides a, b, and c, where a does not equal b and b=c, make a table of n_x, n_y, and n_z, the energies, and the degeneracies of the levels in which the quantum numbers range from 0 to 4 (Take ((a^2)/(b^2)) = 2).

Ok, I think I have an idea of what I'm supposed to do, but I'm a little confused on two parts of the question. When they ask for a table using quantum numbers from 0 to 4, would that mean I'd have to make a long list with n_x, n_y, and n_z like:

0 0 0

0 0 1

0 0 2

0 0 3

0 0 4

0 0 5

and so on until I've listed all 125? Someone in my class said that there were 64 because of the zeroes, however I didn't really understand why we would be able to. I know that:

http://img165.imageshack.us/img165/1706/01mk3.jpg [Broken]

So once I list all the states, I would have to substitute in the values for n_x, n_y, and n_z - but am I supposed to be able to get numerical values for the energies? I can get solve for a in terms of b and such, then plug in, but I still wouldn't get any numbers. Once I can figure out what I have to list, all I'd have to do to list the degeneracy is count the amount of states with different quantum numbers that have the same energy.

Last edited by a moderator: