Particle in Two Boxes: Impact of Dividing Barrier on Energy State

  • Thread starter Thread starter chrisphd
  • Start date Start date
  • Tags Tags
    Particle
chrisphd
Messages
60
Reaction score
0
Suppose we have a particle in a 1-dimensional box, such that the particle is in its lowest energy state. The energy of a particle in a 1-dimensional box is E = h^2*n^2/(8*m*L^2). Therefore, if the particle is in its lowest energy level, n = 1, and the box has a length of d, then E = h^2/(8*m*d^2). Now suppose we divide the box into two boxes, A and B, using an impenetratable barrier so that each new box has a length of d/2. Now, if the particle is found to be in box A, the minimum energy it can have is n = 1, where E = h^2*n^2/(8*m*L^2) and therefore, E= h^2/(8*m*(d/2)^2) = 4*h^2/(8*m*d^2). This is the same for the particle being found in box B by symmetry. How is it possible that the energy has increased by simply adding a dividing barrier.
 
Physics news on Phys.org
The process of insertion of the barrier would require energy. That energy would be transmitted to the particle. The whole process can be simulated by a time-dependent potential. It is known that a time-dependent potential corresponds to a non-conserved energy due to an external energy source.
 
To Me

Well Gentleman To Me The Energy Of Particle Is Decreased On Applying Barrier,bcoz We Have Restricted Particle To Finite Area.if We Further Introduce Separation,then Again Energy Is Decreased.so What We Are Doing,is Just Limiting Its Range Of Freeness.
Have You Studied Gibb's Paradox,it Also Tell The Same Thing But Regarding Entropy.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top