1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Partition function for hard spheres on a lattice

  1. Mar 4, 2013 #1
    Hi everyone,

    I'm reading some lecture notes on statistical physics and thermodynamics and I'm stuck at an expression for a partition function which I really don't understand.

    The chapter is on mean field theory and the discussion is about hard spheres on a lattice. The interaction of the hard sphere is [itex]\beta U = \infty[/itex] if [itex]r<\sigma[/itex] and [itex]\beta U = 0[/itex] if [itex]r>\sigma [/itex] as usual, where [itex]\sigma[/itex] is the diameter of the spheres.

    Now it's said that a single hard sphere is treated exactly and the other spheres are located at their 'ideal' lattice positions. This supposedly leads to [itex]Z_N=\prod_{i=1}^N V_i[/itex] where [itex]V_i[/itex] is the free volume in which the center of mass of particle i can move.

    I really don't see this. I'm expecting an [itex]h^3[/itex] or [itex]\Lambda ^3[/itex] to appear somewhere, obtained by integrating over the momenta of such a sphere, but it isn't there. Why is this the partition function?
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted



Similar Discussions: Partition function for hard spheres on a lattice
  1. Hard sphere model (Replies: 6)

  2. Partition Functions (Replies: 1)

  3. Hard sphere gas (Replies: 5)

Loading...