- #1

squib

- 40

- 0

T = 2pi (mgl/I)^.5

I assume that l = r, since center of mass is in the middle of the hoop.

I = 3mr^2/2

So T = 2pi(2g/3r)

Also tried with I = mr^2/2 in case I'm misunderstanding the problem and it is oscillating in the other direction, but this did not work either.

Anyone see my error?

Next:

A mass M is suspended from a spring and oscillates with a period of 0.860 s. Each complete oscillation results in an amplitude reduction of a factor of 0.965 due to a small velocity dependent frictional effect. Calculate the time it takes for the total energy of the oscillator to decrease to 0.500 of its initial value.

Tried .965^t = .5, then t = log(.5)/log(.965) but this didn't work... any other suggestions?