- 31

- 0

**1. Homework Statement**

A 1.50-kg, horizontal, uniform tray is attached to a vertical ideal spring of force constant 185 N/m and a 275-g metal ball is in the tray. The spring is below the tray, so it can oscillate up-and-down. The tray is then pushed down 15.0 cm below its equilibrium point (call this point A) and released from rest. (a) How high above point A will the tray be when the metal ball leaves the tray? (b) How much time elapses between releasing the system at point A and the ball leaving the tray? (c) How fast is the ball moving just as it leaves the tray?

**2. Homework Equations**

ΣF = ma_y

-mg-ky = m((d^2y)/(dt^2)) + (k/m)y + g = 0

**3. The Attempt at a Solution**

I'm not sure of how to approach this problem, but I'm thinking of solving for y in the equation above.