I have a problem about combinations and permutations I am trying to solve. Say we have an(adsbygoogle = window.adsbygoogle || []).push({}); n-dimensional vector. Each element of the vector can contain any one of [tex]\lambda=3[/tex] values (-1, 0 or +1). Then the number of possible vectors is simply:

[tex]\lambda^n[/tex]

If we place the additional restriction that the vector must contain exactly [tex]k[/tex] non-zeros, then it becomes:

[tex]p=(\lambda-1)^{k}\times\binom{n}{k}=\frac{n!(\lambda-1)^{k}}{k!(n-k)!}[/tex]

If we change the restriction so that it must containat most[tex]k[/tex] non-zeros andat least1 non-zero, then it becomes:

[tex]p=\sum_{k'=1}^{k}\left[(\lambda-1)^{k'}\times\binom{n}{k'}\right]=\sum_{k'=1}^{k}\frac{n!(\lambda-1)^{k'}}{k'!(n-k')!}[/tex]

Are my equations correct? Is there a more compact way of expressing this last equation, to get rid of the summation?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Permutations/combinations problem

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**