Perturbed Harmonic oscil

  • #1
malawi_glenn
Science Advisor
Homework Helper
4,786
22

Homework Statement



Sakural modern quantum.. ch 5 problem 1

A simple one dimensional harmonic oscillator is subject to a perturbation:

V = bx, where b is a real constant.

Calculate the energy shift in ground state to lowest non vanishing order.

Homework Equations



You may use:

[tex] \langle k \vert x \vert n \rangle = \sqrt{\dfrac{\hbar}{2m\omega}}\left( \sqrt{n+1}\delta_{k,n+1} + \sqrt{n}\delta_{k,n-1} \right) [/tex]

where |n> is eigentkets to unperturbed harm. osc

Energy shift:

[tex]
\Delta _{n} \equiv E_n - E^{(0)}_n = \lambda V_{nn} + \lambda^{2} \sum _{k\neq n} \dfrac{\vert V_{nk}\vert^{2}}{E^{(0)}_n - E^{(0)}_k} + . . . [/tex]

Lamda is order, V_nn is matrix elements.

Energy levels for harm osc

[tex] E_N^{(0)} = \hbar \omega (1/2 + N) [/tex]

The Attempt at a Solution




I first do the matrix representation of V = bx

[tex] V_{nk} \doteq b\sqrt{\hbar / (2m \omega)}\left( \begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\1 & 0 & \sqrt{2}& 0 & 0 \\0 & \sqrt{2}& 0 & \sqrt{3} &0\\ 0 & 0 & \sqrt{3}&0&0 \end{array}
[/tex]

Then I choose n = 0, since ground state.

[tex]\Delta _{0} \equiv E_0 - E^{(0)}_0 = \lambda V_{00} + \lambda^{2} \sum _{k\neq 0} \dfrac{\vert V_{0k}\vert^{2}}{E^{(0)}_0 - E^{(0)}_k} + . . . [/tex]

I notice that [tex]V_{00} = 0[/tex] and [tex]V_{0k} [/tex]is zero for all k except 1; so that:

[tex]V_{01} = b\sqrt{\hbar / (2m \omega)} [/tex]

And

[tex]E^{(0)}_0 - E^{(0)}_1} = \hbar \omega [/tex]

So that
[tex] \Delta _{0} = -b^2 / (2m \omega ^2) [/tex]

I have no answer to this problem, does it look right to you?
Thanx!
 
Last edited:

Answers and Replies

Related Threads on Perturbed Harmonic oscil

  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
4
Views
11K
  • Last Post
Replies
4
Views
2K
Replies
1
Views
3K
Replies
5
Views
943
  • Last Post
Replies
1
Views
1K
Replies
2
Views
4K
  • Last Post
Replies
1
Views
5K
Replies
3
Views
2K
Replies
1
Views
857
Top