- #1

- 68

- 0

## Homework Statement

An EM wave normally shed on a conductive material ([itex]\tilde{\epsilon}=\epsilon+i\epsilon_i,\mu_0[/itex]). Calculate the phase shift of the electric field of the reflected wave relative to that of the incident wave.

## Homework Equations

[itex]\nabla^2\textbf{E}=\mu\epsilon\frac{\partial^2\textbf{E}}{\partial t^2}+\mu\sigma\frac{\partial\textbf{E}}{\partial t}\Rightarrow\tilde{\textbf{E}}=\tilde{\textbf{E}}_0e^{i(\tilde{k}z-\omega t)}[/itex]

[itex]\nabla^2\textbf{B}=\mu\epsilon\frac{\partial^2\textbf{B}}{\partial t^2}+\mu\sigma\frac{\partial\textbf{B}}{\partial t}\Rightarrow\tilde{\textbf{B}}=\tilde{\textbf{B}}_0e^{i(\tilde{k}z-\omega t)}[/itex]

[itex]\tilde{k}=k+i\kappa\qquad;\qquad k=\omega\sqrt\frac{\epsilon\mu}{2}\left[\sqrt{1+\left(\frac{\sigma}{\epsilon\mu}\right)^2}+1\right]^{\frac{1}{2}}\,,\qquad\kappa=\omega\sqrt\frac{\epsilon\mu}{2}\left[\sqrt{1+\left(\frac{\sigma}{\epsilon\mu}\right)^2}-1\right]^{\frac{1}{2}}[/itex]

## The Attempt at a Solution

If I express [itex]\tilde{k}[/itex] as [itex]\tilde{k}=Ke^{i\phi}[/itex] where [itex]K[/itex] is a constant, I have a phase difference [itex]\phi=\tan^{-1}\frac{\kappa}{k}[/itex]. This however seem to be the phase difference between the E and B field and not between the incident and reflected wave. I am the grader of a course using the second half of Griffiths' EM text book, but I don't seem to be able to find the solution to this question there.