# Photon detection statistics

1. A 2.5m aperture telescope obverses a star through an R filter. Assume that there is no noise associated with the detection system. The CCD has a full well depth of 20,000 counts and a gain correction factor of 1.00000.
a. On average, the telescope detects 3 photons/sec from this star. What is the probability that it will detect less than three photons in an 1 second observation

I'm pretty sure I got this one, use the Poisson distribution as shown below.

P = (3^0e^(-3))/0! + (3^1e^(-3))/1! + (3^2e^(-3))/2! = 0.42

b. Another star is observed. On average, the telescope detects 1,230 photons/sec from this star. What is the probability that will detect more than 1,230 photons in any one second observation?

It is this part I am a little unsure of, I know I need to use the normal distribution but not sure how to reach from it.

Related Introductory Physics Homework Help News on Phys.org
BvU
Homework Helper
2019 Award
Hello Lynx, and welcome to PF. Please use the template.

You want to approach the Poisson distribution by a normal distribution in the second case, which is reasonable. Do you know why ? And do you have an expression for the normal distribution ? It has a certain characteristic that makes answering b) a piece of cake....

The reason why I want to use the normal distribution is because I know with a larger mean Poisson 'turns' Gaussian. And from a quick look at the bell curve, the answer would be rounded to 1/2. I'm just not sure how to express it mathematically.

Orodruin
Staff Emeritus
Homework Helper
Gold Member
Don't look at the curve, look at the mathematical expression for the probability distribution function of the normal distribution. What is its value in x=μ-ε if its value in x=μ+ε is p0?

Ok, so the probability distribution function is -

P = 1/(σ√2∏)*e^(-1/2((x-μ))/σ)^2

But I'm not sure how to find the standard deviation with the information given? I know its a silly question but I don't understand how to figure it out?

BvU
• 