When summing over photon polarizations for a given amplitude if it can be written as:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]M = M^{\mu} \epsilon^{*}_{\mu}}[/tex]

then

[tex] \sum_\epsilon |\epsilon^{*}_\mu M^\mu |^2 = \sum_\epsilon \epsilon^{*}_\mu epsilon\nu M^\mu M^{* \nu}[/tex]

and you can replace the sum over polarizations with a [tex]-g_{\mu \nu}[/tex]

But what if you cannot separate it out? Say your M is of the form:

[tex]M=\epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma + A\epsilon^{*}_\mu[/tex]

Do you square it out, but then the first term will be a [tex]-g^{\alpha \alpha'}[/tex] so each term gets summed over different indices?

[tex]\sum_\epsilon |M|^2 =\left( \epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma + A\epsilon^{*}_\mu\right)\left(\epsilon_{\nu \alpha' \beta' \sigma'} \epsilon^{\alpha'} q^{\beta'} p^{\sigma'} + A\epsilon_\nu \right)[/tex]

[tex]\sum_\epsilon |M|^2 =\left( \epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma \epsilon_{\nu \alpha' \beta' \sigma'} \epsilon^{\alpha'} q^{\beta'} p^{\sigma'} + A\epsilon^{*}_\mu\epsilon_{\nu \alpha' \beta' \sigma'} \epsilon^{\alpha'} q^{\beta'} p^{\sigma'} + \epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma A\epsilon_\nu+ A\epsilon^{*}_\mu A\epsilon_\nu\right)[/tex]

So my question is, for every pair of polarization vectors do I make the replacement to the metric tensor? Or do I multiply the entire thing by g mu nu?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Photon Polarization Sum

**Physics Forums | Science Articles, Homework Help, Discussion**