Physical significance

  • #1
17
0
Can some help me to solve this question
I have no idea where to start
a) What is the physical significance of the intercept of the graph with the frequency axis (x-axis)?
b) What is the physical significance of the intercept of the graph with the kinetic energy axis (y-axis)?
c) Use the graph to determine the value of Planck’s constant
d) In a similar experiment, the cathode of the photocell is replaced with a cathode that has a stronger force of attraction for its electrons. Describe how a graph of kinetic energy against frequency would be
i. Similar to the given graph
ii. Different from the given graph
 

Attachments

  • graph.doc
    128 KB · Views: 273

Answers and Replies

  • #2
If you have no idea where to start, them I'm afraid we cannot help you. You must have some idea of how to start. Have you read your class notes/text on the subject matter?
 
  • #3
If you have no idea where to start, them I'm afraid we cannot help you. You must have some idea of how to start. Have you read your class notes/text on the subject matter?

I am working on the same question right now. First off, I am a little confused as to what they are asking in parts a) and b)... As far as part c) goes I tried the following method to determine h (Planck's constant) :

E=hf therefore,

h=E/f

So referring to the graph, at 3 eV (4.8 x 10^-19 J) the f is 10 x 10^14 Hz

h = 4.8 x 10^-19 J / 10 x 10^14 Hz
h = 4.8 x 10^-34 Js

This does not make sense as Planck's constant, as we know, is 6.63 x 10^-34 Js

Can anyone shed some light on these issues? Thanks!
 
  • #4
E does not equal hf; it equals hf-W, where W is the work function of the metal.

I think parts a and b are pretty clear. The equation of the line in the graph is E=hf-W, so what do the intercepts represent?
 
  • #5
E does not equal hf; it equals hf-W, where W is the work function of the metal.

I think parts a and b are pretty clear. The equation of the line in the graph is E=hf-W, so what do the intercepts represent?

So the significance of the intercept of the x-axis is that is represents the threshold frequency, but there is no y intercept, so does that signify that there can be no Ek until the threshold freq. has been reached?
 
  • #6
There IS a y-intercept. It's negative and doesn't represent an actual electron, but it does have physical significance.

Again, look at the equation of the line: E=hf-W
 
  • #7
There IS a y-intercept. It's negative and doesn't represent an actual electron, but it does have physical significance.

Again, look at the equation of the line: E=hf-W

I'm hitting a brick wall here... I'll start with what I know for sure:

h is constant, and f cannot be a negative
With f=0, the y-axis will be negative the value of the work function

So does the y-intercept represent the work function? (in the negative plane of course)
 
  • #8
Yup, it's the negative of the work function.
 
  • #9
Perfect. So how would I prove Planck's constant without knowing the exact work function? Should I just use the value for W from the graph? Because it would be close but not exact...
 
  • #10
i would looooove to know the answer to c) & d). i figured out a) & b)!
 

Suggested for: Physical significance

Replies
14
Views
600
Replies
7
Views
811
Replies
4
Views
716
Replies
1
Views
907
Replies
1
Views
1K
Back
Top