(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Evaluate the triple integral of the region E, where E is the solid w/i the cylinder x^2+y^2=1, above the plane z=0, and below the cone z^2=x^2+y^2.

So is the plane z=0 same as the xy-plane? I was doing a hw problem that has

2. Relevant equations

I just need help conceptually understand the limits of integration. So we know that x has intercepts at ±1 and y has intercepts at ±1. And since the cylinder lies along the z-axis, the radius integrand ranges from -1 to 1. The theta integrand ranges from 0 to 2∏. And the z integrand ranges from 0 to 2r.

Now when I saw the solution, it said that the radius integrand ranges from 0 to 1; not -1 to 1. Which makes me question, is the plane z=0 a vertical plane or horizontal plane? Or do you think the solution has an error? Because if the plane was vertical, the radius integrand would range from 0 to ∏

3. The attempt at a solution

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Planes Help

**Physics Forums | Science Articles, Homework Help, Discussion**