• I

Does my below integration is correct?

##\int \sqrt{1 - x^2} \ dx##

Let ##x = \sin \theta##, then
##dx = \cos \theta \ d \theta##,
##\cos \theta = \sqrt{1 - x^2}##,
##\theta = \sin^{-1} (x)##

##\int \sqrt{1 - x^2} \ dx##
##= \int \left( \sqrt{1 - \sin^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \left( \sqrt{\cos^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \cos \theta \cos \theta \ d\theta##
##= \int \cos^2 \theta \ d\theta##
##= \int \frac{1 + \cos 2\theta}{2} \ d\theta##
##= \frac{1}{2} \int d\theta + \frac{1}{2} \int \cos 2\theta \ d\theta##
##= \frac{1}{2} \theta + \frac{1}{2} \frac{1}{2} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} 2 \sin \theta \cos \theta + C##
##= \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C##
##= \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C##

Does this correct?

Does my below integration is correct?

##\int \sqrt{1 - x^2} \ dx##

Let ##x = \sin \theta##, then
##dx = \cos \theta \ d \theta##,
##\cos \theta = \sqrt{1 - x^2}##,
##\theta = \sin^{-1} (x)##

##\int \sqrt{1 - x^2} \ dx##
##= \int \left( \sqrt{1 - \sin^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \left( \sqrt{\cos^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \cos \theta \cos \theta \ d\theta##
##= \int \cos^2 \theta \ d\theta##
##= \int \frac{1 + \cos 2\theta}{2} \ d\theta##
##= \frac{1}{2} \int d\theta + \frac{1}{2} \int \cos 2\theta \ d\theta##
##= \frac{1}{2} \theta + \frac{1}{2} \frac{1}{2} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} 2 \sin \theta \cos \theta + C##
##= \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C##
##= \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C##

Does this correct?
Yes, in case ##|x|\leq 1.##

Yes, in case ##|x|\leq 1.##

Why ##|x|\leq 1.##?

Why ##|x|\leq 1.##?
Otherwise, it won't be the sine of an angle.

The formula for ##|x|\geq 1## involves ##\cosh^{-1}## at least if the integral table on Wikipedia where I looked it up is correct.

malawi_glenn
If $x > 1$ the integral is $i\int \sqrt{x^2 - 1}\,dx$ and $x = \cosh u$ with $dx = \sinh u\,du$ and $\cosh^2 u - 1 =\sinh^2 u$ is simplest. If $x < -1$ then use $x = -\cosh u$ instead.

Does my below integration is correct?

##\int \sqrt{1 - x^2} \ dx##

Let ##x = \sin \theta##, then
##dx = \cos \theta \ d \theta##,
##\cos \theta = \sqrt{1 - x^2}##,
##\theta = \sin^{-1} (x)##

##\int \sqrt{1 - x^2} \ dx##
##= \int \left( \sqrt{1 - \sin^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \left( \sqrt{\cos^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \cos \theta \cos \theta \ d\theta##
##= \int \cos^2 \theta \ d\theta##
##= \int \frac{1 + \cos 2\theta}{2} \ d\theta##
##= \frac{1}{2} \int d\theta + \frac{1}{2} \int \cos 2\theta \ d\theta##
##= \frac{1}{2} \theta + \frac{1}{2} \frac{1}{2} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} 2 \sin \theta \cos \theta + C##
##= \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C##
##= \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C##

Does this correct?
One way to find out is to take the derivative. What does that give you?

-Dan

vanhees71
Does this correct?

One way to find out is to take the derivative. What does that give you?
@askor, this is something you should always do in an integration problem. If you differentiate your answer and get back to the original integrand, you know your work is correct (assuming you didn't make any mistakes in differentiating the answer).

PeroK and topsquark
Can I modify the result such as ##\theta = \cos^{-1} (\sqrt{1 - x^2})##,
so that the final result will be ##\frac{1}{2} \cos^{-1} (\sqrt{1 - x^2}) + \frac{1}{2} x \sqrt{1 - x^2} + C##?

erobz

Can I modify the result such as ##\theta = \cos^{-1} (\sqrt{1 - x^2})##,
so that the final result will be ##\frac{1}{2} \cos^{-1} (\sqrt{1 - x^2}) + \frac{1}{2} x \sqrt{1 - x^2} + C##?

@askor, this is something you should always do in an integration problem. If you differentiate your answer and get back to the original integrand, you know your work is correct (assuming you didn't make any mistakes in differentiating the answer).
https://www.wolframalpha.com/input?i=d/dx+((1/2)*(cos^{-1}+(root(1+-+x^2)+))+++(1/2)+*x+*root(1-x^2))=

topsquark
What does it mean? I don't understand.

What does what mean?
What don't you understand?
Have you differentiated your suggestion as recommended?
What did you mean in post #8?
Do you know WolframAlpha?
What from the link didn't you understand?

Listen, you cannot come here and expect people to do your work or to guess what you might have meant.

topsquark
Observe that for ##x \gt 1## the integrand is complex.
$$I=\int \sqrt{1-x^2}dx=i\int \sqrt{x^2-1}dx$$
If you want to go further with this; let ##x=\cosh(u)##, ##dx=\sinh(u)du##.
$$\sqrt{\cosh^2(u) -1}=\sinh(u)$$
$$I=i\int \sinh^2(u)du$$
$$\sinh^2(u)=\frac{1}{2}(\cosh(2u)-1)$$
$$I=\frac{i}{2}\int (\cosh(2u)-1)du=\frac{i}{4}(\sinh(2u)-2u) + C$$
$$=\frac{i}{4}(\sinh(2\cosh^{-1}(x)) -2\cosh^{-1}(x)) + C$$
$$=\frac{i}{4}(\sinh(2\ln(x+\sqrt{x^2 -1})) -2\ln(x+\sqrt{x^2 -1})) + C$$