- #1
avata4
- 1
- 0
- Homework Statement:
- ∀n ℕ-{0}, ∃ (p,q) ℕ², n=2^p(2q+1)
- Relevant Equations:
- ∀n ℕ-{0}, ∃ (p,q) ℕ², n=2^p(2q+1)
i think solution with récurrence
for n=1 then 1=2¨¨^0(2x0 +1) true
suppose that n=2¨^p(2q+1) is true shows that n+1=2^p( 2q +1)?
n+1=2¨^p(2q+1) +1 ⇒ ??
for n=1 then 1=2¨¨^0(2x0 +1) true
suppose that n=2¨^p(2q+1) is true shows that n+1=2^p( 2q +1)?
n+1=2¨^p(2q+1) +1 ⇒ ??
Last edited: