- #1

avata4

- 1

- 0

- Homework Statement:
- ∀n ℕ-{0}, ∃ (p,q) ℕ², n=2^p(2q+1)

- Relevant Equations:
- ∀n ℕ-{0}, ∃ (p,q) ℕ², n=2^p(2q+1)

i think solution with récurrence

for n=1 then 1=2¨¨^0(2x0 +1) true

suppose that n=2¨^p(2q+1) is true shows that n+1=2^p( 2q +1)?

n+1=2¨^p(2q+1) +1 ⇒ ??

for n=1 then 1=2¨¨^0(2x0 +1) true

suppose that n=2¨^p(2q+1) is true shows that n+1=2^p( 2q +1)?

n+1=2¨^p(2q+1) +1 ⇒ ??

Last edited: