• Support PF! Buy your school textbooks, materials and every day products Here!

Please help me prove this identity

Hi
I am a Mech Engg student trying to study how stress is defined in quantum mechanics. I am referring to a paper where the following identity is given but i am not sure how to go about proving it
The identity is
[tex]

\[
\left\{ {\hat A,\left[ {\nabla _i \nabla _i ,\delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)} \right]} \right\} = - \nabla _{R,i} \left\{ {\hat A,\left\{ {\nabla _i ,\delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)} \right\}} \right\}
\]

[/tex]

Here, [tex]\[
\nabla _i = - \frac{{\hat p_i }}{{i\hbar }}
\][/tex]

Also, [tex]\hat{A}[/tex] is any operator.

My LHS is

[tex]

\[
\hat A\nabla _i \nabla _i \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right) - \hat A\delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\nabla _i \nabla _i + \nabla _i \nabla _i \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\hat A - \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\nabla _i \nabla _i \hat A
\]
[/tex]

My RHS is

[tex]

\[
- \nabla _{R,i} \left( {\hat A\nabla _i \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right) + \hat A\delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\nabla _i + \nabla _i \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\hat A + \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\nabla _i A} \right)
\]
[/tex]

For the 1st term of the RHS, since [tex]\hat{A}[/tex] and [tex]\nabla _i[/tex] are independent of R, i can write it as
[tex]

\[
\begin{array}{l}
- \nabla _{R,i} \hat A\nabla _i \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right) = - \hat A\nabla _i \nabla _{R,i} \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right) \\
But,\nabla _{R,i} \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right) = - \nabla _i \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right) \\
So, - \hat A\nabla _i \nabla _{R,i} \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right) = \hat A\nabla _i \nabla _i \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right) \\
\end{array}
\]
[/tex]

As you can see this matches the 1st term of the LHS

Is this approach correct?

Similarly, i can try the third term of the RHS

[tex]
\[
\begin{array}{l}
- \nabla _{R,i} \nabla _i \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\hat A = - \nabla _i \nabla _{R,i} \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\hat A \\
{\rm{ = }}\nabla _i \nabla _i \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\hat A \\
\end{array}
\]
[/tex]

This matches the 3rd term of the LHS, but i am not sure if i am correct here.

To match the other two terms,i am trying to use

2nd term of the RHS

[tex]
\[
\begin{array}{l}
- \nabla _{R,i} \hat A\delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\nabla _i = - \hat A\nabla _{R,i} \delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\nabla _i \\
= - \hat A\nabla _{R,i} \nabla _{R,i} \\
\end{array}
\]
[/tex]

2nd term of the LHS

[tex]

\[
- \hat A\delta \left( {{\bf{\hat r}} - {\bf{R}}} \right)\nabla _i \nabla _i = - \hat A\nabla _{R,i} \nabla _{R,i}
\]
[/tex]

Similarly, i can prove the equivalence of the 4th terms of the RHS and the LHS
I am not sure but i think if i am violating the commutation principles (especially to match the 2nd terms). Is this correct ?

Can somebody please correct me?
 

Answers and Replies

Related Threads for: Please help me prove this identity

  • Last Post
Replies
1
Views
1K
Replies
4
Views
1K
Replies
1
Views
2K
Replies
4
Views
2K
Replies
12
Views
2K
  • Last Post
Replies
1
Views
572
Replies
19
Views
1K
Top