Please help me to solve these 2 D.E

  • Thread starter yukcream
  • Start date
  • #1
yukcream
59
0
Q1. Let u(x) be a function with the property that the area under the curve between any two points, a, b with a<b, is directly proportional to the different of the functional values at a and b. Obtain a differential equation for u(x).

Q2. A parabolic reflector has the property that a light source placed at its focus produces a parallel beam, or, conversely, parallel rays converge at the focus. Assuming that reflection of light from a curve is determined by the usual laws of reflection for the tangent to the curve at the point of incidence (angle of incidence equals angle of reflection), use the above property to determine a differential equation for the parabola.
 

Answers and Replies

  • #2
HallsofIvy
Science Advisor
Homework Helper
43,021
970
yukcream said:
Q1. Let u(x) be a function with the property that the area under the curve between any two points, a, b with a<b, is directly proportional to the different of the functional values at a and b. Obtain a differential equation for u(x).
I assume that the "curve between any two points, a, b with a< b" is the graph of y= u(x). It would have been a good idea to say that.
In order to get a differential equation, fix a and take b= x as variable.
The "area under the curve" is now [itex]\int_a^x u(t)dt[/itex] and that must be equal to u(x)- u(a): [itex]\int_a^x u(t)dt= u(x)- u(a)[/itex]. What do you get if you differentiate both sides of that equation?

Q2. A parabolic reflector has the property that a light source placed at its focus produces a parallel beam, or, conversely, parallel rays converge at the focus. Assuming that reflection of light from a curve is determined by the usual laws of reflection for the tangent to the curve at the point of incidence (angle of incidence equals angle of reflection), use the above property to determine a differential equation for the parabola.
Draw a graph, taking the axis of the parabola to be the x-axis. That way all the "parallel rays" are "y= constant". Let the focus be (a, 0). The slope of the ray from any point (x,y) on the parabola to (a, 0) is, of course, y/(x-a). Use a little geometry to show that the angle that ray makes with the x-axis is exactly twice the angle the incoming ray makes with the tangent line to the parabola. With a simple trig formula (for tan(2&theta;)), show that, with m= slope of tangent line,[itex]\frac{y}{x-a}= \frac{2m}{1+m^2}[/itex].
Of course, m is [itex]\frac{dy}{dx}[/itex].
 
  • #3
yukcream
59
0
thx for ur help!
 

Suggested for: Please help me to solve these 2 D.E

Replies
1
Views
553
  • Last Post
Replies
23
Views
893
Replies
13
Views
401
Replies
5
Views
991
  • Last Post
Replies
5
Views
750
  • Last Post
Replies
3
Views
309
Replies
3
Views
589
  • Last Post
Replies
6
Views
777
  • Last Post
Replies
2
Views
322
  • Last Post
Replies
3
Views
926
Top