Please help, I am running out of my wits trying to solving this equation:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\int_{0}^{2\pi}e^{jz\cos \theta}\sin(m\theta)d\theta[/tex]

This is part of a bigger equation involving integral representation of Bessel function. I posted on all the math forums and nobody can help yet. I posted on the homework forum here about the Bessel function and still no luck. I read about all the articles on integral representation of Bessel function ( there are less than two handful of it!!!) and have no luck.

I tried letting [itex]\theta=\theta-\pi[/itex]

[tex]\sin(m\theta-m\pi)=\sin(m\theta)\cos(m\pi)-\cos(m\theta)\sin(m\pi)=\sin(m\theta)\cos(m\pi)=\sin(m\theta)(-1)^m[/tex]

[tex]\Rightarrow\;\int_{\pi}^{2\pi}e^{jz\cos \theta}\sin(m\theta)d\theta=\int_0^{\pi} e^{jz\cos( \theta-\pi)} \sin(m\theta-m\pi)d\theta=\int_{0}^{\pi}e^{-jz\cos \theta}(-1)^m \sin(m\theta)d\theta[/tex]

I am not seeing it get simpler.

I tried [tex]\;e^{jz\cos \theta}=\cos (z\cos \theta) +j\sin(z\cos \theta)\;[/tex] Where you need to solve [tex]\;\int_0^{2\pi}[\cos (z\cos \theta) +j\sin(z\cos \theta)]\sin(m\theta) d\theta\;= \int_0^{2\pi}\cos (z\cos \theta)\sin(m\theta) d\theta +j \int_0^{2\pi}\sin (z\cos \theta)\sin(m\theta) d\theta [/tex]

First integral is zero, the second integral is not zero only

[tex]z\cos\theta=m\theta[/tex]

But this really doesn't look right as x is the variable of a Bessel function and x is going to be limited to maximum value of [itex]m\theta[/itex] no matter what.

I tried [tex]\;e^{jz\cos \theta}=\sum_0^{\infty}\frac {(jz\cos\theta)^k}{k!}\;[/tex] Where you need to solve [tex]\;\int_0^{2\pi}\sum_0^{\infty}\frac {(jz\cos\theta)^k}{k!}\sin(m\theta)d\theta[/tex].

then substitute [itex]\sin(m\theta)=\frac{e^{jm\theta}-e^{-jm\theta}}{2j}[/itex] then using binomial expansion of [itex]\cos^p \theta=\left[\frac{e^{j\theta}+e^{-j\theta}}{2}\right]^p[/itex] and use the fact [itex]\int_0^{2\pi} e^{jm\theta}d\theta=0[/itex]. Still no luck.

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Please help this integration

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**