I have HW is Difficult for me

if any body can help me :(

Q1:
1)In a conducting media the wave equation:
$$\Delta$$^2$$E$$=$$\mu$$$$\sigma$$$$dE/dt$$+$$\mu\epsilon$$$$d2E/dt2$$

has solution of the type E(z, t) = E0 exp [ i (kZ –w t)], where
$$\kappa$$^2 = $$\mu\epsilon$$ w2 + i $$\mu\sigma$$ w.
a) Find explicit expressions for real and imaginary parts of $$\kappa$$ .
b)Show that in a good conductor the electric field leads the magnetic field by 45(deg) and find the ratio of their amplitudes. ?

Q2:
A monochromatic plane polarized electromagnetic wave
E(r, t) = E0 sin (k. r – w t) is traveling eastward.
The wave is polarized with E directed vertically up and down alternately. Calculate E, B and the Poynting vector S provided that the amplitude of the electric field strength is 0.05 V/m and the frequency = 6 MHz. Also, find the <S>?

plez I wanna the answer. befor friday night

thanx for all

Related Advanced Physics Homework Help News on Phys.org
gabbagabbahey
Homework Helper
Gold Member

Hi pop, Welcome to PF! As per the forum rules, you need to show some attempt at a solution in order to get assistance here.

tiny-tim
Homework Helper
Welcome to PF!

Hi pop! Welcome to PF! (try using the X2 tag just above the Reply box )

(also, if you use LaTeX, just put tex and \tex at the start and end of each line; and ∇ is \nabla not \Delta )

Q1:
1)In a conducting media the wave equation:
2E = µ σ dE/dt + µ ε d2E/dt2

has solution of the type E(z, t) = E0 ei (kZ –w t), where
k2 = $$\mu\epsilon$$ w2 + i $$\mu\sigma$$ w.
a) Find explicit expressions for real and imaginary parts of $$\kappa$$ .
b)Show that in a good conductor the electric field leads the magnetic field by 45(deg) and find the ratio of their amplitudes. ?

For 1a), just differentiate … what equations do you get? And that should help you with 1b) gabbagabbahey:

thanx
i read it ____________

tiny-tim

hi
For 1a), just differentiate … what equations do you get? yah I know ....if i do this i will get :
k2 = $$\mu\epsilon$$ w2 + i $$\mu\sigma$$ w.

but i don't need this i need Eq 9.126 in Ch 9
in Griffiths. Electrodynamics 3ed >> sorry i can't write it :)

any way thanx alot .....i did it

_____________

I still wait to your help in Q2

Q2:
A monochromatic plane polarized electromagnetic wave
E(r, t) = E0 sin (k. r – w t) is traveling eastward.
The wave is polarized with E directed vertically up and down alternately. Calculate E, B and the Poynting vector S provided that the amplitude of the electric field strength is 0.05 V/m and the frequency = 6 MHz. Also, find the <S>?

plez I wanna the answer. befor friday night

thanx for all
:)

gabbagabbahey
Homework Helper
Gold Member

I still wait to your help in Q2
This forum supports LaTeX, which should make writing vector equations easier for you. For example, a general monochramitic plane wave is given by

$$\vec{E}(\vec{r},t)=\vec{E_0}e^{i(\vec{k}\cdot\vec{r}-\omega t)}$$

....Now, as for your question, I'd start by picking a coordinate system (for example, positive x-direction="East" and "vertical"=positive y-direction) and then write explicitly the polarization unit vector and wave vector and use that to re-write $\vec{E}(\vec{r},t)$.

Then, use Faraday's Law to calculate $\vec{B}(\vec{r},t)$. And finally calculate <S>.

Last edited: