Could an asymptote be defined as a point, or a circle? I assume it would be in a rather exotic topology, or a very trivial one. Furthermore, can we define each of these as the other's asymptote? The points would probably have to turn into lines(functions) by virtue of an extra dimension in that topology.(adsbygoogle = window.adsbygoogle || []).push({});

What I'm basically trying to figure out is how a generic attractive force, coupled with a generic mass-like property(i.e. the points can't overlap; passive repelling force) could be defined mathematically, without using vectors. I first thought of setting x,y as each other's limit(x->y and y->x), with x[tex]\neq[/tex]y, but that leads to x=y, due to the nature of the limit operation. With asymptotes, I'm guessing an infinity should show up.

Am I making any sort of sense?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Point/circular asymptotes?

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**