I Point on a manifold

  • Thread starter dsaun777
  • Start date
78
9
Say you have some n dimensional manifold embedded in a higher space. what is the best way to describe or define a point on a manifold with or without coordinates. How could I do this either intrinsically or using the embedded space. Would you use the tangent space somehow using basis vectors?
 

fresh_42

Mentor
Insights Author
2018 Award
11,425
7,848
I would primarily ask how your manifold is defined?
 
78
9
I would primarily ask how your manifold is defined?
Differentiable manifold
 

fresh_42

Mentor
Insights Author
2018 Award
11,425
7,848
This is not a description, this is an arbitrary object in a category.

You basically asked something like "what is the best way to describe or define a vector in a vector space with or without coordinates?" and answered to "Which vector space?" by "Finite dimensional vector space." How would you answer this question?
 
78
9
This is not a description, this is an arbitrary object in a category.

You basically asked something like "what is the best way to describe or define a vector in a vector space with or without coordinates?" and answered to "Which vector space?" by "Finite dimensional vector space." How would you answer this question?
Well, in euclidean space a point is simply coordinates or a position vector. Is there an analog to differential manifolds?
 

fresh_42

Mentor
Insights Author
2018 Award
11,425
7,848
You have embedded it in a higher and I assume Euclidean space, so this embedding provides naturally coordinates. If we only have the manifold itself, then the question is how it is defined. We need a frame for coordinates, an origin and directions. On an arbitrary manifold we have those only locally, i.e. a different frame at every point, and no point is naturally suited to be an origin, or better: all points are. We often have paths within a manifold, so we could use a comoving coordinate system. Whatever you want to do, the first question is always: what do you have?

If "differentiable manifold" is your only answer, then its atlas is mine. Show me the atlas and I show you your points.
 
78
9
You have embedded it in a higher and I assume Euclidean space, so this embedding provides naturally coordinates. If we only have the manifold itself, then the question is how it is defined. We need a frame for coordinates, an origin and directions. On an arbitrary manifold we have those only locally, i.e. a different frame at every point, and no point is naturally suited to be an origin, or better: all points are. We often have paths within a manifold, so we could use a comoving coordinate system. Whatever you want to do, the first question is always: what do you have?

If "differentiable manifold" is your only answer, then its atlas is mine. Show me the atlas and I show you your points.
"different frame at every point, and no point is naturally suited to be the origin" was kinda the answer was looking for
 

Want to reply to this thread?

"Point on a manifold" You must log in or register to reply here.

Related Threads for: Point on a manifold

Replies
63
Views
4K
Replies
5
Views
3K
Replies
19
Views
5K
Replies
1
Views
2K
  • Posted
Replies
17
Views
954
Replies
7
Views
3K
Replies
9
Views
595
  • Posted
2
Replies
28
Views
4K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top