• Support PF! Buy your school textbooks, materials and every day products Here!

Pointwise convergence

  • Thread starter Ted123
  • Start date
  • #1
446
0

Homework Statement



Suppose a sequence [itex](f_n)_{n\in\mathbb{N}}[/itex] converges to a limit [itex]f[/itex] in the metric space [itex](C[a,b],d_{\infty})[/itex] (continuous real valued functions on the interval [a,b] with the uniform metric.)

Show that [itex]f_n[/itex] also converges pointwise to [itex]f[/itex]; that is for each [itex]t\in [a,b][/itex] we have [itex]f_n(t)\to f(t)[/itex] in [itex]\mathbb{R}[/itex].

Homework Equations



Uniform metric: [tex]d_{\infty} (f,g) = \text{max}_{t\in [a,b]} |f(t)-g(t)|[/tex]

The Attempt at a Solution



[itex]f_n \to f[/itex] in [itex](C[a,b],d_{\infty}) \iff d_{\infty}(f_n,f)\to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff \text{max}_{t\in [a,b]} |f_n(t)-f(t)| \to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff|f_n(t)-f(t)| \to 0[/itex] for all [itex]t\in [a,b][/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff f_n(t) \to f(t)[/itex] for all [itex]t\in [a,b][/itex]

Does this prove it?
 
Last edited:

Answers and Replies

  • #2
Dick
Science Advisor
Homework Helper
26,258
618
Looks ok to me.
 
  • #3
LCKurtz
Science Advisor
Homework Helper
Insights Author
Gold Member
9,519
734

Homework Statement



Suppose a sequence [itex](f_n)_{n\in\mathbb{N}}[/itex] converges to a limit [itex]f[/itex] in the metric space [itex](C[a,b],d_{\infty})[/itex] (continuous real valued functions on the interval [a,b] with the uniform metric.)

Show that [itex]f_n[/itex] also converges pointwise to [itex]f[/itex]; that is for each [itex]t\in [a,b][/itex] we have [itex]f_n(t)\to f(t)[/itex] in [itex]\mathbb{R}[/itex].

Homework Equations



Uniform metric: [tex]d_{\infty} (f,g) = \text{max}_{t\in [a,b]} |f(t)-g(t)|[/tex]

The Attempt at a Solution



[itex]f_n \to f[/itex] in [itex](C[a,b],d_{\infty}) \iff d_{\infty}(f_n,f)\to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff \text{max}_{t\in [a,b]} |f_n(t)-f(t)| \to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff|f_n(t)-f(t)| \to 0[/itex] for all [itex]t\in [a,b][/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff f_n(t) \to f(t)[/itex] for all [itex]t\in [a,b][/itex]

Does this prove it?
You need to be careful what you are proving. You have all these [itex]\iff[/itex] implications which would lead one to believe that pointwise convergence and uniform convergence are the same. But they aren't. So look at your argument carefully and make sure the implications go in the direction to prove what you want to prove.
 
  • #4
Dick
Science Advisor
Homework Helper
26,258
618
You need to be careful what you are proving. You have all these [itex]\iff[/itex] implications which would lead one to believe that pointwise convergence and uniform convergence are the same. But they aren't. So look at your argument carefully and make sure the implications go in the direction to prove what you want to prove.
Good point!
 
  • #5
446
0
Obviously to prove what I want I only need all steps to be [itex]\implies[/itex] but which step above is not "if and only if"? (is it the last step?)
 
  • #6
Dick
Science Advisor
Homework Helper
26,258
618
|f_n(t)-f(t)|->0 for all t does not imply max |f_n(t)-f(t)|->0. Can you think of a counterexample?
 
  • #7
LCKurtz
Science Advisor
Homework Helper
Insights Author
Gold Member
9,519
734
Obviously to prove what I want I only need all steps to be [itex]\implies[/itex] but which step above is not "if and only if"? (is it the last step?)
|f_n(t)-f(t)|->0 for all t does not imply max |f_n(t)-f(t)|->0. Can you think of a counterexample?
And I would add that if I were handing in a proof, I would use a tighter argument. While your implications in one direction are OK, you wouldn't have made that mistake if your argument went something like:

[tex]0 \le |f_n(t)-f(t)| \le ... \rightarrow 0[/tex]

where you fill in the dots with reasons for each step.
 

Related Threads on Pointwise convergence

  • Last Post
Replies
1
Views
622
  • Last Post
Replies
1
Views
794
Replies
3
Views
3K
  • Last Post
Replies
10
Views
1K
  • Last Post
Replies
2
Views
755
  • Last Post
Replies
18
Views
640
Replies
0
Views
879
  • Last Post
Replies
8
Views
3K
  • Last Post
Replies
10
Views
2K
  • Last Post
Replies
2
Views
3K
Top