Pointwise convergence

  • Thread starter Ted123
  • Start date
  • #1
Ted123
446
0

Homework Statement



Suppose a sequence [itex](f_n)_{n\in\mathbb{N}}[/itex] converges to a limit [itex]f[/itex] in the metric space [itex](C[a,b],d_{\infty})[/itex] (continuous real valued functions on the interval [a,b] with the uniform metric.)

Show that [itex]f_n[/itex] also converges pointwise to [itex]f[/itex]; that is for each [itex]t\in [a,b][/itex] we have [itex]f_n(t)\to f(t)[/itex] in [itex]\mathbb{R}[/itex].

Homework Equations



Uniform metric: [tex]d_{\infty} (f,g) = \text{max}_{t\in [a,b]} |f(t)-g(t)|[/tex]

The Attempt at a Solution



[itex]f_n \to f[/itex] in [itex](C[a,b],d_{\infty}) \iff d_{\infty}(f_n,f)\to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff \text{max}_{t\in [a,b]} |f_n(t)-f(t)| \to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff|f_n(t)-f(t)| \to 0[/itex] for all [itex]t\in [a,b][/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff f_n(t) \to f(t)[/itex] for all [itex]t\in [a,b][/itex]

Does this prove it?
 
Last edited:

Answers and Replies

  • #2
Dick
Science Advisor
Homework Helper
26,263
619
Looks ok to me.
 
  • #3
LCKurtz
Science Advisor
Homework Helper
Insights Author
Gold Member
9,568
774

Homework Statement



Suppose a sequence [itex](f_n)_{n\in\mathbb{N}}[/itex] converges to a limit [itex]f[/itex] in the metric space [itex](C[a,b],d_{\infty})[/itex] (continuous real valued functions on the interval [a,b] with the uniform metric.)

Show that [itex]f_n[/itex] also converges pointwise to [itex]f[/itex]; that is for each [itex]t\in [a,b][/itex] we have [itex]f_n(t)\to f(t)[/itex] in [itex]\mathbb{R}[/itex].

Homework Equations



Uniform metric: [tex]d_{\infty} (f,g) = \text{max}_{t\in [a,b]} |f(t)-g(t)|[/tex]

The Attempt at a Solution



[itex]f_n \to f[/itex] in [itex](C[a,b],d_{\infty}) \iff d_{\infty}(f_n,f)\to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff \text{max}_{t\in [a,b]} |f_n(t)-f(t)| \to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff|f_n(t)-f(t)| \to 0[/itex] for all [itex]t\in [a,b][/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff f_n(t) \to f(t)[/itex] for all [itex]t\in [a,b][/itex]

Does this prove it?

You need to be careful what you are proving. You have all these [itex]\iff[/itex] implications which would lead one to believe that pointwise convergence and uniform convergence are the same. But they aren't. So look at your argument carefully and make sure the implications go in the direction to prove what you want to prove.
 
  • #4
Dick
Science Advisor
Homework Helper
26,263
619
You need to be careful what you are proving. You have all these [itex]\iff[/itex] implications which would lead one to believe that pointwise convergence and uniform convergence are the same. But they aren't. So look at your argument carefully and make sure the implications go in the direction to prove what you want to prove.

Good point!
 
  • #5
Ted123
446
0
Obviously to prove what I want I only need all steps to be [itex]\implies[/itex] but which step above is not "if and only if"? (is it the last step?)
 
  • #6
Dick
Science Advisor
Homework Helper
26,263
619
|f_n(t)-f(t)|->0 for all t does not imply max |f_n(t)-f(t)|->0. Can you think of a counterexample?
 
  • #7
LCKurtz
Science Advisor
Homework Helper
Insights Author
Gold Member
9,568
774
Obviously to prove what I want I only need all steps to be [itex]\implies[/itex] but which step above is not "if and only if"? (is it the last step?)

|f_n(t)-f(t)|->0 for all t does not imply max |f_n(t)-f(t)|->0. Can you think of a counterexample?

And I would add that if I were handing in a proof, I would use a tighter argument. While your implications in one direction are OK, you wouldn't have made that mistake if your argument went something like:

[tex]0 \le |f_n(t)-f(t)| \le ... \rightarrow 0[/tex]

where you fill in the dots with reasons for each step.
 

Suggested for: Pointwise convergence

  • Last Post
Replies
1
Views
837
  • Last Post
Replies
1
Views
972
Replies
3
Views
3K
  • Last Post
Replies
2
Views
930
  • Last Post
Replies
10
Views
1K
  • Last Post
Replies
2
Views
4K
  • Last Post
Replies
4
Views
17K
  • Last Post
Replies
10
Views
3K
  • Last Post
Replies
8
Views
3K
  • Last Post
Replies
18
Views
968
Top