1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Poisson brackets

  1. Oct 2, 2006 #1
    I need to show using Poisson brackets that:

    [tex]\left( \frac{\partial}{\partial t} \right) {f,g} = \left( \frac{\partial f}{\partial t} , g} \right)+ \left( {f, \frac{\partial g}{\partial t} \right)[/tex]

    I know that:

    [tex] (f,g) = \left( \frac{\partial f}{\partial q} \frac{\partial g}{\partial p}} \right)- \left( {\frac{\partial f}{\partial p} \frac{\partial g}{\partial q} \right) [/tex]

    To show the above statement, I will expand using Poisson Brackets:

    [tex] \left( \frac{\partial f}{\partial f} , g \right) [/tex] and [tex] \left( f, \frac{\partial g}{\partial t} \right) [/tex]

    [tex] \left( {\frac{\partial f}{\partial f} , g} \right)= \frac{\partial }{\partial q} \frac{\partial f}{\partial t} \frac{\partial g}{\partial p} - \frac{\partial }{\partial p} \frac{\partial f}{\partial t} \frac{\partial g}{\partial q} [/tex]

    [tex] \left( {f, \frac{\partial g}{\partial t} } \right)= \frac{\partial f}{\partial q} \frac{\partial }{\partial p} \frac{\partial g}{\partial t} - \frac{\partial f}{\partial p} \frac{\partial }{\partial q} \frac{\partial g}{\partial t} [/tex]

    [tex] \frac{\partial}{\partial t} \left( {f,g} \right)= \frac{\partial }{\partial q} \frac{\partial f}{\partial t} \frac{\partial g}{\partial p} - \frac{\partial }{\partial p} \frac{\partial f}{\partial t} \frac{\partial g}{\partial q} + \frac{\partial f}{\partial q} \frac{\partial }{\partial p} \frac{\partial g}{\partial t} - \frac{\partial f}{\partial p} \frac{\partial }{\partial q} \frac{\partial g}{\partial t} [/tex]

    [tex] \frac{\partial}{\partial t} \left( f,g \right)= \frac{\partial}{\partial t} \left( 2 \frac{\partial f}{\partial q} \frac{\partial g}{\partial p}} - 2 \frac{\partial f}{\partial p} \frac{\partial g}{\partial q} \right)[/tex]

    Am I using Poisson brackets correctly? Not sure how I got double the terms I wanted.
     
    Last edited: Oct 2, 2006
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?