Let [tex]x_{0}, x_{1}, \cdots , x_{n}[/tex] be distinct points in the interval [a,b] and [tex]f \in C^{1}[a,b][/tex].(adsbygoogle = window.adsbygoogle || []).push({});

We show that for any given [tex]\epsilon >0[/tex] there exists a polynomial p such that

[tex]\left\| f-p \right\|_{\infty} < \epsilon[/tex] and [tex]p(x_{i}) = f(x_{i})[/tex] for all [tex]i=1,2, \cdots , n [/tex]

I know [tex]\left\| f\right\| _{\infty}= max_{x \in [a,b]}|f(x)| [/tex] and I wonder if the polynomial they are asking for is the Lagrangian polynomial interpolating f at the nodes [tex]x_{0}, x_{1}, \cdots , x_{n}[/tex]. If yes, I am not sure how to prove the problem.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Polynomial interpolation

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**