Poor man's nuclear energy?

  1. I know what fission is and what fusion is. Who needs em? I figure that most of the energy content of particles emitting from naturally radioactive materials is lost to distant locales. Am I right? If you took a sizable chunk of radioactive mineral, like uranium, whether refined or not, whether enriched or not, if that chunk were encased in a layer of lead then wouldn't it get warm after a bit? And wouldn't it stay warm for nearly forever? Please: could I use an arrangement like that to heat my cabin?
     
  2. jcsd
  3. Sure, and you can get electricity too (like deep space probes).

    But what's wrong with making even more efficient use of these minerals, as a reactor does?
     
  4. mgb_phys

    mgb_phys 8,952
    Science Advisor
    Homework Helper

    The energy output form uranium from natural alpha radioactivity is tiny ( a couple of miCi/kg) Even for Plutonium you only get 10W/kg from spontaneous fission.
     
  5. 10W/kg is humble alright, but it sounds like a start -- IF it can be contained/harnessed as described. You're referring to refined plutonium, yes? (not the ore). I can't figure out what MiCi stands for. You said "alpha" and I think you mean electrons, right? Is there more for the lead to absorb than just that? Aren't there also photon emissions? How about beta radioactivity? Just the 10W?? hmmm..
     
  6. mgb_phys

    mgb_phys 8,952
    Science Advisor
    Homework Helper

    Uranium on it's own emits Alpha particles - the good news is that they aren't very dangerous, they can be stopped by a sheet of paper, the bad news is that they don't have a lot of energy.
    Natural uranium ore emits about 12million alpha particles/kg/s (the milliCurie is an old unit) each particle carries around 4Mev or 6x10-13 Joules of energy
    So a total of 7.6x10-6 Joules/kg/s or 7.5Watts from 1000tons!
    Thats the reason for Rutherford's famous statement that getting energy from radiation was moonshine.

    The energy in reactors come from the much more energetic fission (splititng) of atoms, For natural uranium the rate of splitting is very low, only U235 splits an it makes up only 0.2% of natural uranium. Thats why 'weapons grade' uranium needs to be enriched to contain much more U235, or you can also use plutonium it has a higher rate of splitting - but thats trickier to get hold of.
    You can increase the rate of splitting by putting a bigger lump together (the critical mass) or adding another material (a moderator) to improve the efficency - but then you have built a reactor!

    There is a kind of reactor called a pebble bed which is almost what you suggest. Small beads of reactor fuel in a big pile (inside a container!) that simply get hot enough to boil water but not hot enough to meltdown
     
    Last edited: Jan 21, 2009
  7. vanesch

    vanesch 6,236
    Staff Emeritus
    Science Advisor
    Gold Member

    Moved to engineering (it is about a practical application, not a scientific question of nuclear physics).

    Just some notes: as to plutonium, there's no ore of it, it is man-made in nuclear reactors.

    The problem with heating something with nuclear reactions is that most of the time, by the time it gets hot, the radiation is already lethal for a long time. So you need shielding, radiation protection and all that. It was the joke of the cold fusion of Pons and Fleishmann: if they really had seen some heat in their non-shielded apparatus, they wouldn't have lived to tell the world! (after that, they "invented" the radiationless fusion, but ok....) In a nuclear power plant inside the reactor, the radiation levels are so high that you get a lethal dose in less than a millisecond.

    While it is true that alpha radiation itself is harmless outside of the body (very short range of the particles), most alpha emitting also goes with gamma emissions.
     
  8. Vanadium 50

    Vanadium 50 17,775
    Staff Emeritus
    Science Advisor
    Education Advisor

    True, but it's also true that there is a trace amount in uranium ore. It's produced by the same processes as in reactors, just on a much, much slower timetable.
     
  9. Thank you for satisfying my curiosity
     
  10. There are things like what you describe, harnessing energy directly from radioisotopes; these are used in exotic places where refueling is not an option. However, these are rare and very expensive: isotopes radioactive enough to have meaningful power output must have very short half-lives, so none of these occur naturally on earth. (Most isotopes are created in astrophysical nuclear reactions, either in stars or (for the heavier ones) in supernovae. The nuclei on earth come from these primordial sources and are billions of years old; so the only significant radioisotopes here are those with billion-year half lives - Th-232, U-235, U-238, and K-40, and their daughter products.) Thus only synthetic radioisotopes are usable, and these can only feasibly be created in nuclear reactors (or perhaps particle accelerator neutron sources). So radioisotope power is really just a way of storing energy created in nuclear reactors.

    One way is just like what you describe - collecting the decay heat of radiation, perhaps using it to generate electricity in a heat engine. Radioisotope thermoelectric generators (RTGs) are used in some exotic applications where refueling is not an option - pacemakers (long-lived surgical implants), remote naviagation beacons (common in the former USSR), and space probes to the outer solar system (too far from the sun for solar panels).

    Wikipedia: Radioisotope thermoelectric generators

    Plutonium-238 glowing incandescently from its own decay heat:
    [​IMG]

    RTG-powered pacemaker with plutonium:
    [​IMG]

    2.5 Ci * 46 MeV/decay = 680 milliwatts

    Oak Ridge: Plutonium Powered Pacemaker (1974)

    Another method is to use beta emitters (nuclei which emit high-energy electrons when they decay) to excite phosphors (chemicals which emit light when excited by energetic electrons or photons). This a light that never goes out. Tritium (hydrogen-3) is common today in battery-less emergency signs.

    Wikipedia: Self-powered lighting

    EPA: Discarded Tritium Exit Signs

    Tritium in a phosphor-lined vial on a keychain: $29.00
    [​IMG]
     
    Last edited: Jan 22, 2009
  11. Morbius

    Morbius 1,160
    Science Advisor

    truhaht,

    I'm afraid you are wrong. Most radioactive decay reactions only give you a few MeV [ million electron
    volts ] of energy.

    The fission reaction gives you about 200 MeV of energy from a nucleus that is about 200 amu in
    mass - so you get about 1 MeV / amu of energy per unit mass of fuel.

    D-T fusion gives you 17.6 MeV of energy from a reactants that have a mass of 5 amu - so you
    get about 3 MeV / amu of energy per unit mass of fuel for D-T fusion.

    You get a LOT more energy from fission and fusion.

    Dr. Gregory Greenman
    Physicist
     
  12. And fission and fusion converts only a tiny proportion of material to energy...1 or 2% in fission. So a lot of "debris" is left....
    I like the concept of harnessing the cosmological constant inherent in every piece of space....it's called dark energy or negative pressure....antigravity....but that's not likely in our life times.
     
  13. mheslep

    mheslep 3,466
    Gold Member

    Careful there. No 'material' nuclear particles are converted to energy in fission or fusion reactions. The total binding energy of the nucleus/nuclei changes in those nuclear reactions; that binding energy has an equivalent relativistic mass. There's probably a PF sticky FAQ on this somewhere that states the case more completely than I am able.
     
  14. vanesch

    vanesch 6,236
    Staff Emeritus
    Science Advisor
    Gold Member

    Actually, I wonder, for thermo-electric generators powered by Pu-238, does one do an isotopic separation on the plutonium to get pure Pu-238 ?
     
  15. Good question. If Pu-238 is produced from Np-237(n,gamma) (Np-238 beta decays), and it seems that Pu-238 has a much higher (n,gamma) cross section than Np-237 in the thermal spectrum (looking it up on NNDC), then it would make sense that "Pu-238" created in light-water thermal reactors would actually be mostly Pu-239. But I've never heard of hot-cell isotopic separation - uranium enrichment is of course very low-radiation stuff. IIRC Kirk Sorensen claimed that it's next to impossible, in the context of proliferation and the thorium fuel cycle, where short-lived U-232 contaminates fissile U-233.

    :confused:

    [​IMG]
     
    Last edited: Jan 23, 2009
  16. vanesch

    vanesch 6,236
    Staff Emeritus
    Science Advisor
    Gold Member

    Ah, that's it. First, Np-237 is extracted from nuclear spend fuel, and then separately re-irradiated in a neutron flux.
    You can work with low production fractions, and then the production rate of Pu-238 (proportional to the density of Np-237) is larger than the production rate of Pu-239 (proportional to the density of Pu-238), like they do in production reactors for Pu-239 (with U-238 this time). If you only convert, say, 1% of the Np-237 into Pu-238 before separation, you get pretty pure Pu-238.
     
  17. And now our enemies have the recipe they've longed for? :uhh:
     
  18. Oh, so obvious! :redface:

    Relax. Everyone knows how make plutonium - it's no use if you don't already have a working nuclear reactor (no other source of neutrons is powerful enough). Also, a subtle point: Pu-239 is the fissile isotope usable in weapons, whereas Pu-238 is a non-fissile isotope used in RTGs as a heat source.
     
    Last edited: Jan 25, 2009
  19. Astronuc

    Staff: Mentor

    http://consolidationeis.doe.gov/background.html
     
  20. Morbius

    Morbius 1,160
    Science Advisor

    truhaht,

    It's a pretty OBVIOUS thing to do. Additionally, Pu-238 production doesn't give one the recipe for
    a bomb. One needs fissile Pu-239 for a nuclear weapon - not radioactive Pu-238.

    In fact, Pu-238 is something you want to LEAVE OUT OF a nuclear weapon - the Pu-238 doesn't
    help in the fission reaction - and its radioactivity and heat just complicate matters.

    Dr. Gregory Greenman
    Physicist
     
  21. vanesch

    vanesch 6,236
    Staff Emeritus
    Science Advisor
    Gold Member

    I understand why one wants to leave out Pu-238, but nevertheless, the k_inf is more than 2.5 in its own fission spectrum. It is not fissile in a thermal spectrum, but it is in a fast spectrum.
     
Know someone interested in this topic? Share a link to this question via email, Google+, Twitter, or Facebook

Have something to add?