I'm attempting to help someone with their diff eq homework and I'm having trouble remembeing how to do things and their book isn't the best.(adsbygoogle = window.adsbygoogle || []).push({});

So here's the problem:

"Suppose the number x(t) (with t in months) of alligators in a swamp satisfies the differential equation

dp/dt = 0.0001x^2 - 0.01x

(a) If there are initially 25 alligators in the swamp, solve this differential equation to determine what happens to the alligator population in the long run.

(b) Repeat for an initial population of 150 alligators."

The main part that's throwing me is the dp/dt = stuff with x, but they say that x is the number of alligators, which basically means population, right? So should I be setting this up as dx/dt = 0.0001x^2 - 0.01x instead?

I did that and I kept getting the ln of a negative number when x(0) was 25 [My actual equation was: 100(ln(x-100)-ln(x)) = t+C]. And lns of negative numbers don't work, so I assumed it's not supposed to be dx/dt = 0.0001x^2 - 0.01x.

But when I use dp/dt = 0.0001x^2 - 0.01x and integrate I get:

P = (0.0001x^2 - 0.01x)t + C

If this is the right way to do it then I know that if t is zero then x doesn't matter and I can solve for C, which gives me C = 25, but this doesn't seem right. If this is right then how do I find the population in the long run? I need to find when the population dies out, so P would be 0 and I would solve for t to find the time. But with my second version I still have x that I have no values for.

I know I'm making some really obvious mistake and I just can't see it yet, but I'm completely lost and any help would be super! All of the examples I've found online or in the book are dp/dt= stuff with p. I remember doing problems like the one in the HW problem, but I can't remember how I did them.

Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Poplation Problem

Loading...

Similar Threads for Poplation Problem |
---|

A Stefan Problem |

A Solving an ODE Eigenvalue Problem via the Ritz method |

A Understanding dummy variable in solution of 1D heat equation |

A Problems with identities involving Legendre polynomials |

**Physics Forums | Science Articles, Homework Help, Discussion**