Position and acceleration vector - parallel and perpendicular

  • Thread starter logearav
  • Start date
  • #1
logearav
338
0
Position and acceleration vector -- parallel and perpendicular

Homework Statement



The motion of a particle is defined by the position vector
r = A(Cos t + t Sin t) i + A(Sin t + t Cos t) j where t is expressed in seconds. Determine the values of t for which the position vector and acceleration vector are
a) perpendicular
b) parallel

Homework Equations




The Attempt at a Solution


For acceleration i have differentiate r twice and arrive at the equation. So, i should go for cross product to find 't' when they are parallel and dot product when they are perpendicular.
Am I right in my procedure, revered members?
 

Answers and Replies

  • #2
gneill
Mentor
20,948
2,892


Homework Statement



The motion of a particle is defined by the position vector
r = A(Cos t + t Sin t) i + A(Sin t + t Cos t) j where t is expressed in seconds. Determine the values of t for which the position vector and acceleration vector are
a) perpendicular
b) parallel

Homework Equations




The Attempt at a Solution


For acceleration i have differentiate r twice and arrive at the equation. So, i should go for cross product to find 't' when they are parallel and dot product when they are perpendicular.
Am I right in my procedure, revered members?

Your proposed method looks fine, but is the given position vector correct? It doesn't appear to me that the position and acceleration vector will ever be perpendicular or parallel for a real value of t.
 
  • #3
logearav
338
0


Thanks gneill. But this is how the question appears in University Exam paper.
 

Suggested for: Position and acceleration vector - parallel and perpendicular

Replies
2
Views
436
Replies
4
Views
636
Replies
20
Views
734
Replies
9
Views
349
Replies
5
Views
210
  • Last Post
Replies
17
Views
879
  • Last Post
Replies
27
Views
369
Top